Science Highlights

Ionized carbon and dust emission from high-redshift galaxies
Gas surrounding high-redshift galaxies has been studied through observations of damped Lyman-alpha absorbers toward background quasars for decades. However, it has proven difficult to identify and characterize the galaxies associated with these absorbers due to the intrinsic faintness (at optical wavelengths) of the foreground galaxies compared with the background quasars. Neeleman et al. used the Atacama Large Millimeter/Submillimeter Array to obtain the first detections of ionized carbon ([CII]) 158-micron line and dust-continuum emission from two galaxies associated with damped Lyman-alpha absorbers at very high redshifts, z~4. The two upper panels of the figure show the dust continuum emission from the galaxies, while the lower panels show the [CII] 158-micron line emission. The results indicate that the host galaxies of the two absorbers are massive, dusty and rapidly star-forming systems. The hosts appear to be embedded in enriched neutral hydrogen gas reservoirs that extend well beyond the star-forming interstellar medium of the galaxies. The figure shows the two detections of ionized carbon (bottom panels) and dust continuum emission (top panels) from the two DLAs at z~4.
The spin temperature of high-redshift damped Lyman-alpha systems
Kanekar et al. report results from a large programme aimed at investigating the temperature of neutral gas in high-redshift damped Lyman-alpha absorbers (DLAs). This involved (1) HI 21cm absorption studies of a large sample of DLAs towards radio-loud quasars, to measure the spin temperature (2) very long baseline interferometric studies to measure the low-frequency quasar core fractions, and (3) optical/ultraviolet spectroscopy to determine DLA metallicities and the velocity widths of low-ionization metal lines. Kanekar et al. found a statistically significant difference between the spin temperature distributions in the high-redshift (z > 2.4) and low-redshift (z < 2.4) DLA samples: the high-z sample contains more DLAs with high spin temperature, >~ 1000 K. The high DLA spin temperatures arise due to low fractions of the cold neutral medium (CNM): only two of 23 DLAs at z > 1.7 have CNM fractions > 20%, comparable to the median value (~ 27%) in the Milky Way. Kanekar et al. robustly confirmed the presence of an anti-correlation between spin temperature and metallicity [Z/H], via a non-parametric Kendall-tau test. The data thus appear to indicate that high-redshift DLAs have significantly larger fractions of the warm phase of neutral hydrogen than is present in the Milky Way and local spiral galaxies, probably because the paucity of metals in the absorbers implies a lack of cooling routes in the absorber host galaxies. The figure shows the spin temperature of the DLAs of the sample plotted versus redshift (left panel) and metallicity (right panel). The left panel shows that there is a higher fraction of DLAs with high spin temperatures at high redshifts, z>1.7. The anti-correlation between spin temperature and metallicity is clearly visible in the right panel.
GMRT detections of HI 21cm absorption in two damped Lyman-alpha absorbers at z~2
Kanekar used the new 250-500 MHz receivers of the upgraded GMRT to detect redshifted HI 21cm absorption in two high column density damped Lyα absorbers (DLAs) at z ~ 2. Both absorbers have high inferred integrated HI 21cm optical depths, and hence low spin temperatures. However, for the z=1.9698 DLA toward TXS1755+578, the difference in HI 21cm and C I profiles and the weakness of the radio core suggest that the HI 21cm absorption arises toward radio components in the jet, and that the optical and radio sightlines are not the same; this precludes an estimate of the DLA spin temperature. For the z=1.9888 DLA toward TXS1850+402, the HI 21cm absorption yields a DLA spin temperature ~ 372 K, lower than typical spin temperature values in high-z DLAs. This low spin temperature and the relatively high metallicity of the z=1.9888 DLA are consistent with the anti-correlation between metallicity and spin temperature that has been found earlier in damped Lyα systems. The figure shows the two new GMRT HI 21cm absorption detections.
The temperature of the warm neutral medium in the Milky Way
Roy et al. used deep, high velocity resolution HI 21cm absorption spectra towards 32 sources, obtained with the Giant Metrewave Radio Telescope (GMRT) and the Westerbork Synthesis Radio Telescope (WSRT) to probe physical conditions in the Galactic neutral hydrogen (HI). The HI 21cm absorption spectra are sufficiently sensitive to detect HI 21cm absorption by the warm neutral medium (WNM). Comparing these spectra with HI 21 cm emission spectra from the Leiden-Argentine-Bonn (LAB) survey, Roy et al. show that some of the absorption detected on most sightlines must arise in gas with temperatures higher than that in the stable cold neutral medium (CNM). A multi-Gaussian decomposition of 30 of the HI 21cm absorption spectra yielded very few components with linewidths in the temperature range of stable WNM, with no such WNM components detected for 16 of the 30 sightlines. Some of the detected HI 21cm absorption along 13 of these sightlines must arise in gas with spin temperatures larger than the CNM range. For these sightlines, the authors use very conservative estimates of the CNM spin temperature and the non-thermal broadening to derive strict upper limits to the gas column densities in the CNM and WNM phases. Comparing these upper limits to the total HI column density, at least 28 per cent of the neutral hydrogen must have temperatures in the thermally unstable range (200-5000 K). The GMRT and WSRT data hence robustly indicate that a significant fraction of the gas in the Galactic interstellar medium has temperatures outside the ranges expected for thermally stable gas in two-phase models. The figure shows the maximum kinetic temperature of the different components on each of the 30 sightlines, from the multi-Gaussian fits. The stable WNM temperature range (5000–8000 K) is indicated by the horizontal dashed lines. Components with temperatures consistent with stable WNM are indicated by open circles, while those definitely outside the above range (at >= 3 sigma significance) are shown as filled circles.
The temperature of the diffuse HI in the Milky Way - I. High resolution HI 21 cm absorption studies
Roy et al. used the Giant Metrewave Radio Telescope (GMRT) and the Westerbork Synthesis Radio Telescope (WSRT) spectra to obtain deep, high velocity resolution HI 21cm absorption spectra of 32 compact extra-galactic sources. These are amongst the deepest HI 21cm absorption spectra ever obtained, with optical depth root-mean-square noise < 0.001 per 1 km/s velocity channel, sufficiently sensitive to detect HI 21cm absorption from the warm neutral medium along all sightlines. HI 21cm absorption was detected against all background sources but one, B0438-436. Roy et al. used the detected HI 21cm spectra to infer the spin temperature as a function of velocity along each sightline. On every sightline, the maximum spin temperature detected (at >= 3 sigma significance) is >= 1000 K, indicating that the warm neutral medium is being detected along most sightlines. This is by far the largest sample of Galactic HI 21 cm absorption spectra of this quality, providing a sensitive probe of physical conditions in the neutral atomic interstellar medium. The figure shows the HI 21cm emission spectrum (top), the HI 21cm absorption spectrum (middle), and the spin temperature spectrum (bottom) for six of the 32 targets. HI 21cm absorption is clearly detected against all sources.
GMRT Discovery of PSR J1544+4937: An Eclipsing Black-widow Pulsar Identified with a Fermi-LAT Source
Bhattacharyya et al. used the GMRT to perform deep observations to search for radio pulsations in the directions of unidentified Fermi Large Area Telescope (LAT) gamma-ray sources, resulting in the discovery of a new milli-second pulsar (MSP), PSR J1544+4947, an eclipsing MSP in a special evolutionary state. PSR J1544+4937 is a 2.16 ms pulsar in a 2.9-hour compact circular orbit with a very low-mass companion star (mass > 0.017 solar masses). At 322 MHz, the pulsar is found to be eclipsing for 13% of its orbit, whereas at 607 MHz the pulsar is detected throughout the low-frequency eclipse phase. Variations in the eclipse ingress phase are observed, indicating a clumpy and variable eclipsing medium. Moreover, additional short-duration absorption events are observed around the eclipse boundaries. The authors used the radio timing solutions to detect gamma-ray pulsation from the pulsar, confirming it as the source powering the gamma-ray emission. The figure shows the frequency-dependent eclipsing detected with the GMRT in PSR J1544+4937. The pulsar radiation is seen to be eclipsed by the companion star at 322 MHz, but not at 607 MHz. The figure plots the variation of the timing residuals and the electron column density around the eclipse phase (which is indicated by the shaded region) at 322 MHz (top) and 607 MHz (bottom).
GMRT Discovery of PSR J1544+4937: An Eclipsing Black-widow Pulsar Identified with a Fermi-LAT Source
Bhattacharyya et al. used the GMRT to perform deep observations to search for radio pulsations in the directions of unidentified Fermi Large Area Telescope (LAT) gamma-ray sources, resulting in the discovery of a new milli-second pulsar (MSP), PSR J1544+4947, an eclipsing MSP in a special evolutionary state. PSR J1544+4937 is a 2.16 ms pulsar in a 2.9-hour compact circular orbit with a very low-mass companion star (mass > 0.017 solar masses). At 322 MHz, the pulsar is found to be eclipsing for 13% of its orbit, whereas at 607 MHz the pulsar is detected throughout the low-frequency eclipse phase. Variations in the eclipse ingress phase are observed, indicating a clumpy and variable eclipsing medium. Moreover, additional short-duration absorption events are observed around the eclipse boundaries. The authors used the radio timing solutions to detect gamma-ray pulsation from the pulsar, confirming it as the source powering the gamma-ray emission. The figure shows the frequency-dependent eclipsing detected with the GMRT in PSR J1544+4937. The pulsar radiation is seen to be eclipsed by the companion star at 322 MHz, but not at 607 MHz. The figure plots the variation of the timing residuals and the electron column density around the eclipse phase (which is indicated by the shaded region) at 322 MHz (top) and 607 MHz (bottom).
The GMRT High Resolution Southern Sky (GHRSS) survey
Bhattacharyya et al. used the outstanding GMRT potential for low-frequency pulsar surveys in the GMRT High Resolution Southern Sky (GHRSS) survey, a low-frequency survey for pulsars and transients away from the Milky Way's plane. The GHRSS survey covers Galactic latitudes |b|>5 degrees, scanning the southern sky, with declination -40 degrees to -54 degrees. This declination coverage is complementary to the coverage of other ongoing low-frequency sky surveys around the world. The first phase of the GHRSS survey was carried out using the narrow bandwidths of the GMRT Software Backend, at 322 MHz, and has already resulted in the discovery of bunch of new pulsars with exciting properties. Bhattacharyya et al. discovered 13 pulsars in the GHRSS survey in a surveyed area of 1800 square degrees, i.e. 0.007 pulsars per square degree, which is one of the highest among pulsar surveys away from the Milky Way’s plane. GHRSS survey discoveries include a millisecond pulsar (in a ~10 hour orbit around a ~0.18 solar mass companion star), a pulsar for which gamma-ray pulsations have been discovered using the Fermi Large Area Telescope, and two mildly recycled pulsars. The second phase, using the GMRT Wideband Backend and the 250-500 MHz receivers of the upgraded GMRT is now under way. The figure shows the 21 pulsars discovered by the GMRT between 2012−2017 from targeted and blind surveys. Fermi-directed discoveries are shown as green points; the blue shaded region indicates the sky coverage in Galactic coordinates of the GHRSS survey, while the pulsars discovered in this survey are shown as red points
The GMRT High Resolution Southern Sky (GHRSS) survey
Bhattacharyya et al. used the outstanding GMRT potential for low-frequency pulsar surveys in the GMRT High Resolution Southern Sky (GHRSS) survey, a low-frequency survey for pulsars and transients away from the Milky Way's plane. The GHRSS survey covers Galactic latitudes |b|>5 degrees, scanning the southern sky, with declination -40 degrees to -54 degrees. This declination coverage is complementary to the coverage of other ongoing low-frequency sky surveys around the world. The first phase of the GHRSS survey was carried out using the narrow bandwidths of the GMRT Software Backend, at 322 MHz, and has already resulted in the discovery of bunch of new pulsars with exciting properties. Bhattacharyya et al. discovered 13 pulsars in the GHRSS survey in a surveyed area of 1800 square degrees, i.e. 0.007 pulsars per square degree, which is one of the highest among pulsar surveys away from the Milky Way’s plane. GHRSS survey discoveries include a millisecond pulsar (in a ~10 hour orbit around a ~0.18 solar mass companion star), a pulsar for which gamma-ray pulsations have been discovered using the Fermi Large Area Telescope, and two mildly recycled pulsars. The second phase, using the GMRT Wideband Backend and the 250-500 MHz receivers of the upgraded GMRT is now under way. The figure shows the 21 pulsars discovered by the GMRT between 2012−2017 from targeted and blind surveys. Fermi-directed discoveries are shown as green points; the blue shaded region indicates the sky coverage in Galactic coordinates of the GHRSS survey, while the pulsars discovered in this survey are shown as red points
Stringent constraints on changes in the proton-electron mass ratio over 7.5 Gyrs from methanol lines
Kanekar et al. used the Karl G. Jansky Very Large Array (VLA) to obtain deep absorption spectra in four methanol (CH3OH) lines from the z=0.88582 gravitational lens towards PKS1830-211. Three of the four CH3OH lines have very different sensitivity coefficients to changes in the proton-electron mass ratio mu=m_p/m_e. A comparison between the redshifts of these lines thus allows one to test for temporal evolution in mu. Kanekar et al. compared the line shapes of the three CH3OH lines that have similar rest frequencies, 48.372, 48.377 and 60.531 GHz, and found their line profiles to be in excellent agreement. This yielded a robust constraint of ~4 parts in ten million on fractional changes in mu; this is the most stringent current constraint on changes in mu. Kanekar et al. thus find no evidence for changes in the proton-electron mass ratio over a lookback time of ~7.5 Gyr. The figure to the right shows the four CH3OH lines detected in the z=0.88582 lens with the VLA (two of the lines are in the middle panel, blended with each other); the line rest frequencies in Ghz are listed on the top left of each panel. The dashed blue curve in each panel shows a single Gaussian fit to each line.
Constraints on fundamental constant evolution from HI 21cm and OH 18cm lines
Kanekar et al. used the Green Bank Telescope to carry out spectroscocpy in the redshifted neutral hydrogen (HI) 21cm and hydroxyl (OH) 18cm lines from the z=0.765 absorption system toward the quasar PMN J0134-0931. A comparison between the ``satellite'' OH 18cm line redshifts, or between the redshifts of the HI 21cm and ``main'' OH 18 cm lines, is sensitive to changes in different combinations of the fine structure constant (alpha) and the proton-electron mass ratio (mu = m_p/m_e). A comparison between the redshifts of the HI 21cm and the OH 18cm lines, via a multi-Gaussian fit, yielded strong constraints on changes in a combination of alpha and mu, and no evidence for a change in the constants between z=0.765 and the present epoch. Incorporating the independent constraints on fractional changes in mu from another absorber at a similar redshift, Kanekar et al. found that fractional changes in alpha are less than ~3 parts in a million (at 2 sigma significance) over a look-back time of 6.7 Gyr. The top panels of the figure to the right show the HI 21cm and 18cm lines detected with the Green Bank Telescope, with the multi-Gaussian fit shown in blue. The lower panels show the residuals from each fit, which can be seen to be consistent with noise.
Introducing SPatially REsolved Dynamic Spectra for the Sun
Low radio frequency solar emission spans a very large range in intensity, as well as temporal, spectral and spatial scales. Often multiple processes are going on simultaneously at different locations on the Sun, giving rise to different emissions. These emissions can differ greatly in their strengths and till recently one could usually only study the most intense of these sources. The significantly improved imaging dynamic range of the Mileura Widefield Array (MWA) is now making it possible to study comparatively weaker emissions in presence of more intense ones. In order to facilitate such studies, we have recently developed a new data product which will enable scientists to study the frequency and time variations of the emission coming from any specific patch on the Sun. Called SPREDS, an acronym for SPatially REsolved Dynamic Spectrum, it is named in analogy with the usual definition of a dynamic spectrum, which shows the variations of the emission in the time-frequency plane. We also presented the first flux calibrated solar images from the MWA. The accompanying figure shows an example: the top left panel shows a radio image of the Sun with some regions marked on it; the top right panel shows the dynamic spectrum for the entire Sun, which is the data product used most commonly at these frequencies; the remaining panels show the SPREDS from the corresponding regions marked in the solar disc. Note that the colour scale for these panels is in log scale, the differences between emissions from different regions on the Sun are self evident.
Radio observation of Venus using the GMRT
The surface of Venus has been studied by measuring radar reflections and thermal radio emission over the spectral range from several centimetres to metre wavelengths using Earth-based as well as orbiter platforms. Earlier non-imaging radio observations of Venus in the decimeter wavelength regime show a decreasing trend in the observed brightness temperature with increasing wavelength. The present-day thermal emission models however predict the brightness temperature to remain constant above wavelengths of about 10 cm. Mohan et al. report the first interferometric imaging observations of Venus below 620 MHz, which provide reliable brightness temperature measurements, and confirm this discrepancy. These observations were carried out at 606, 333 and 240 MHz using the GMRT. The brightness temperature values derived at the respective frequencies are 526 K, 409 K and <426 K, with errors of ∼7% which are generally consistent with the reported temperatures at 608 MHz and 430 MHz by previous investigators, but are much lower than those obtained by extrapolating from high-frequency observations at 1.38-22.46 GHz using the VLA. The circle and triangles show the measurements from this work, while the open boxes show the model prediction.
Energisation of Charged Particles by Fast Magnetic Reconnection
Magnetic reconnection has long been understood to be the primary mechanism responsible for the generation of non-thermal electron distributions, which in turn are responsible for the coherent non-thermal emissions at low radio frequencies. However a detailed understanding of the nature of particle acceleration due to reconnection is still lacking. Sharma et al. have carried out a first attempt to understand the details of this process using a 3D magnetohydrodynamics (MHD) framework. They investigate the role of turbulence on the reconnection rate and also study the distributions of energised particles using test-particles. They find that with increasing turbulent intensity the system enters what is usually termed the fast reconnection regime. The speeds of the energised particles are found to follow a Maxwellian distribution whose variance increases with the strength of the reconnecting field. The accompanying figure shows the joint normalised probability distribution functions of velocities of these energised particles along two perpendicular directions for (a) a low turbulence strength, (b) medium turbulence strength and (c) high turbulence strength cases.
Wavelet-based Characterization of Small-scale Solar Emission Features
Low radio frequency solar observations using the Murchison Widefield Array (MWA) have revealed the presence of numerous weak short-lived narrowband emission features, even during moderately quiet solar conditions. These non-thermal features occur at rates of many thousands per hour in the 30.72 MHz observing bandwidth, and hence necessarily require an automated approach for their detection and characterization. Suresh et al. have developed an algorithm which employs continuous wavelet transform for feature detection in the dynamic spectrum. The green circles in the figure show the peaks of the features detected in an example MWA dynamic spectrum. The left and the right panels differ only in the colour bar range and show the efficacy of this implementation in detecting features across a range of intensities, and temporal and spectral spans. They represent the first statistically robust characterization of the properties of these features. This technique can reliably detect features weaker than 1 SFU (1 SFU = 10,000 Jy), the weakest non-thermal radio emissions so far reported in the literature. The features, which typically last for 1-2 seconds and span bandwidths of 4-5 MHz, can potentially provide an energetically significant contribution to coronal and chromospheric heating. They appear to ride on a broadband background continuum, hinting at the likelihood of their being weak, type-I solar bursts.
GMRT monitoring of the X-ray binary V404 Cygni during its June 2015 outburst
Chandra & Kanekar used the GMRT at 1280, 610, 325 and 235 MHz to monitor the black hole X-ray binary V404 Cygni during its 2015 June outburst, extending for a period of 2.5 weeks, and beginning on June 26.9 UT, a day after the strongest radio/X-ray outburst. They find the low-frequency radio emission of V404 Cygni to be extremely bright and fast-decaying in the outburst phase, with an inverted spectrum below 1.5 GHz and an intermediate X-ray state. The radio emission settles to a weak, quiescent state roughly 11 days after the outburst, with a flat radio spectrum and a soft X-ray state. Combining the GMRT measurements with flux density estimates from the literature, the authors identify a spectral turnover in the radio spectrum at ~1.5 GHz on June 26.9 UT (see the attached image), indicating the presence of a synchrotron self-absorbed emitting region. They use the measured flux density at the turnover frequency with the assumption of equipartition of energy between the particles and the magnetic field to infer the jet radius, magnetic field, minimum total energy, and transient jet power. The relatively low value of the jet power, despite V404 Cygni’s high black hole spin parameter, suggests that the radio jet power does not correlate with the spin parameter.
Estimating Solar Flux Density at Low Radio Frequencies
As the Sun is much brighter than the typical radio sources used for flux calibration, absolute flux calibration of solar observations is challenging. At low radio frequencies, this becomes even harder due to large fields of view of the instruments. Turning this large field-of-view into an advantage, Oberoi et al. have developed a technique suitable for a low resolution interferometric baseline to provide robust absolute solar flux calibration. Working with well-characterized antennas and receiver systems, this technique relies on using the available detailed full sky radio maps. It provides a reliable and computationally lean method for extracting parameters of physical interest using a small fraction of the voluminous interferometric data, which can be computationally prohibitively expensive to calibrate and image using conventional approaches. The figure shows an example application of this technique to data from the Murchison Widefield Array. It shows the computed values of solar flux in solar flux units (SFU; 1 SFU=10,000 Jy) as a function of time for ten spectral bands between 100 and 300 MHz.
A candidate sub-parsec binary black hole in the Seyfert galaxy NGC 7674
Kharb, Lal & Merritt have used Very Long Baseline Array (VLBA) observations to discover only the second candidate sub-parsec binary black hole. The existence of such binary super-massive black holes (SMBHs) is predicted by models of hierarchical galaxy formation, but only a single such binary SMBH has been imaged until now. Kharb et al. used the VLBA to study the gas-rich interacting spiral galaxy NGC7674, which possesses a kpc-scale Z-shaped radio jet. The leading model for the formation of such Z-shaped sources postulates the presence of an uncoalesced binary SMBH, created during the infall of a satellite galaxy. Kharb et al. used the high angular resolution of the VLBA to image the central region of NGC7674 at radio frequencies between 2 and 15 GHz, resulting in the detection of two radio cores, separated by just 1 light year, at the highest observing frequency, 15 GHz. The inverted radio spectra of the two cores are consistent with their being accreting super-massive black holes!
Discovery of a radio relic in the low mass galaxy cluster PLCK G200.9-28.2
Kale et al. used the Giant Metrewave Radio Telescope (GMRT), the XMM-Newton X-ray Observatory, and the Jansky Very Large Array to discover a new radio relic in the galaxy cluster PLCKG200.9-28.2 at z~0.22. Such arc-like radio relics are usually found at the periphery of massive colliding clusters, and are extremely rare, arising in fewer than 5% of merging clusters. Despite their rarity, radio relics are an excellent tracer of the shocks that are expected to be driven in the diffuse intra-cluster medium by violent cluster collisions. Indeed, it is very difficult to even detect these shocks at other wavelengths. So far, radio relics have been found only in the vicinity of merging massive clusters. The new radio relic detected by Kale et al. is very interesting because it arises in a cluster of low mass, the lowest mass at which such a relic has ever been seen! This demonstrates that violent mergers in low-mass clusters are capable of producing strong shock waves in their diffuse media. In the adjoining figure, the 235 MHz emission imaged with the GMRT is shown in red and the X-ray emission imaged with the XMM-Newton satellite observatory is shown in blue. The elongated source seen in red is the new radio relic.
GMRT imaging of a high-energy supernova remnant
Nayana et al. used the Giant Metrewave Radio Telescope (GMRT) to detect 325 and 610 MHz radio emission from HESS J1731-347, one of only five known very-high-energy (VHE; > 0.1 TeV) shell-type supernova remnants (SNRs). Multiple filaments of the SNR are clearly seen in the GMRT 610 and 325 MHz images, shown, respectively, in the left and right panels of the adjacent figure. However, the faintest feature in the GMRT bands corresponds to the peak in the VHE emission. This anti-correlation can be explained if the observed VHE gamma-ray emission has a leptonic origin. The individual filaments of the SNR (indicated by "1", "2", "3", and "4") have steep radio spectra, consistent with a non-thermal origin.
An AGN's rendezvous with a radio relic
van Weeren et al. used data from the Chandra X-ray Observatory, the Giant Metrewave Radio Telescope, the Jansky Very Large Array, and other telescopes to discover a cosmic event never seen before. Galaxy clusters contain multiple sources of radio emission, including active galactic nuclei (AGNs), radio halos and radio relics. A long-standing problem in studies of clusters is how low-Mach-number shocks can accelerate electrons efficiently to produce the observed radio relics. van Weeren et al. discovered, for the first time, a direct connection between a radio relic and an AGN (a radio galaxy) in the merging galaxy cluster Abell 3411-3412 by combining radio, X-ray and optical data. This discovery indicates that fossil relativistic electrons from AGNs are re-accelerated at cluster shocks. It also implies that radio galaxies play an important role in governing the non-thermal component of the intra-cluster medium in merging clusters. For the first time, two of the most powerful phenomena in the Universe have been clearly linked together in the same system. Image credits: X-ray: NASA/CXC/SAO/R. van Weeren et al; Optical: NAOJ/Subaru;