Lecture 5 Notes: Stellar Structure and Flux Measurements

Summary Notes

Aug-Sep 2024

1 Learn programming

- Python programming recommended for astronomy
- Reference: https://web.iucaa.in/ ace/programs/

2 Fluxes and Magnitudes

2.1 Apparent Magnitude

- Basic equation: $m_1 m_2 = -2.5 \log_{10}(f_1/f_2)$
- Key characteristics:
 - Logarithmic scale
 - Base $100^{1/5}$
 - Inverted (brighter objects have lower magnitude)
 - Measurements are relative
 - Small flux changes: fractional change in flux \sim magnitude change

2.2 Magnitude Systems

- 1. Vega system (historical standard)
- 2. STMAG system (HST standard)
 - $m_{\lambda}(\lambda) = -2.5 \log_{10} F_{\lambda}(\lambda) 21.1$
 - F_{λ} in erg s⁻¹ cm⁻² Å⁻¹
- 3. AB magnitude system
 - $m_{\nu}(\lambda) = -2.5 \log_{10} F_{\nu}(\lambda) 48.6$
 - F_{ν} in erg s⁻¹ cm⁻² Hz⁻¹

2.3 Jansky Units

- 1 Jy = 10^{-23} erg/sec/Hz/cm²
- Conversion: $f = 3631 \text{ Jy} \times 10^{-0.4m}$
- Common in radio and far-infrared astronomy

3 Distance Measurements

3.1 Distance Modulus

- $\mu = m M = 5 \log_{10}(D_L) 5$
- D_L is luminosity distance in parsecs
- Interpretation:
 - $-\mu > 0$: object farther than 10 parsecs
 - $\mu < 0$: object closer than 10 parsecs

4 Stellar Structure and Evolution

4.1 Definition of a Star

Two key conditions:

- 1. Bound by self-gravity
- 2. Powered by internal energy source

4.2 Hydrostatic Equilibrium

- Balance between gravity and pressure
- Key assumptions:
 - No magnetic field
 - Non-rotating star
 - General relativity not significant

4.3 Eddington Luminosity

- Maximum luminosity while maintaining hydrostatic equilibrium
- Classical formula: $L_{\rm Edd} = \frac{4\pi G M m_p c}{\sigma_T}$
- Modified by opacity: $L_{\rm Edd,mod} = \frac{4\pi GMc}{\kappa}$

- Applications:
 - Limits on stellar masses
 - Accretion rates onto black holes
 - AGN feedback mechanisms

5 Energy Transport in Stars

Three main mechanisms:

- 1. Conduction
- 2. Radiation
- 3. Convection (most complex mechanism)

6 Equations of State

- Ideal gas: P = nkT/V
- Non-relativistic degenerate electron gas: $P = K(n/V)^{5/3}$
- Relativistic degenerate electron gas: $P = K'(n/V)^{4/3}$
- Polytropic equations: $P = K \rho^{\gamma} = K \rho^{1+1/n}$

7 Nuclear Fusion

7.1 Proton Chain

Net reaction: $4^1H \rightarrow {}^4He + 2\nu_e + 26.7 \text{ MeV}$

- Sun produces 4×10^{26} joules per second
- Approximately 9.36×10^{37} reactions per second
- Efficiency around 0.7%

8 Solar Composition

Mass fractions:

- Hydrogen (X): 0.70
- Helium (Y): 0.28
- Metals (Z): 0.02