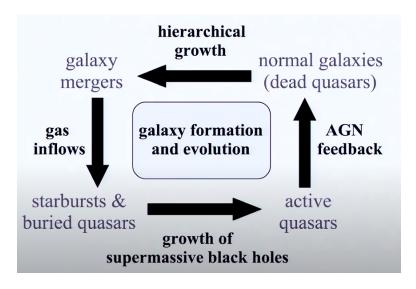

Galaxies: Structure, formation and evolution Lecture 21

Yogesh Wadadekar

Mar-Apr 2022


Galaxy formation and evolution in one diagram

see review by Kormendy & Kennicutt (2004)

Feedback and galaxy evolution

Galaxy formation - proto galaxy definition

- Galaxy in the first X % or Y yrs of its life (X=?, Y=?)
- Galaxy which has formed X % of its stars (X=?)
- Galaxy which has assembled X% of its final mass (X=?)
- Initial density fluctuation which has not formed any stars yet
- Galaxy at a very high redshift z > Z (Z=?)
- Generally we think of the progenitors of massive galaxies today, roughly in the first Gigayear of their life, i.e., at $z \gtrsim 5$
- We certainly expect vigorous star formation to be occuring, and therefore luminous objects

Dissipation in galaxy formation

Galaxies collapse and cool. The binding energy released is:

$$|E_{bind,gal}| \simeq 1.2 \times 10^{59} {
m erg} \times (M_{cool}/10^{11} \, M_{\odot}) (V_{3D}/250 {
m kms}^{-1})^2$$

where M_{cool} is the total mass that can cool radiatively.

Binding energy released by collapsing protostars

$$|E_{bind,\star}| \simeq 4 imes 10^{58} erg imes (\textit{M}_{\Sigma\star}/10^{10}\textit{M}_{\odot}) (\langle \textit{M} \rangle/\textit{M}_{\odot}) (\langle \textit{R} \rangle/\textit{R}_{\odot})^{-1}$$

 $M_{\Sigma_{\star}}$ is the total mass converted to stars, $\langle M \rangle$ is the average star mass and $\langle R \rangle$ is the average star radius.

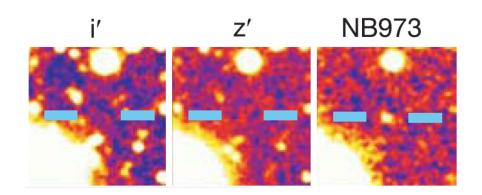
Energy release by nuclear fusion

$$E_{nuc} \simeq \epsilon M_{\Sigma\star} c^2 \Delta X \simeq 10^{60} \mathrm{erg}(\epsilon/0.001) (M_{\Sigma\star}/M_{\odot}) (\Delta X/0.05)$$

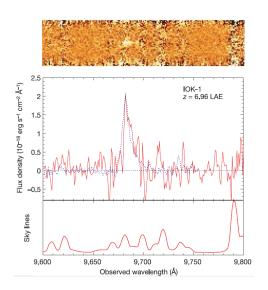
Energy release by early AGN

Using an average bolometric luminosity $\langle L_{bol} \rangle$ and the average duration of the active episode Δt

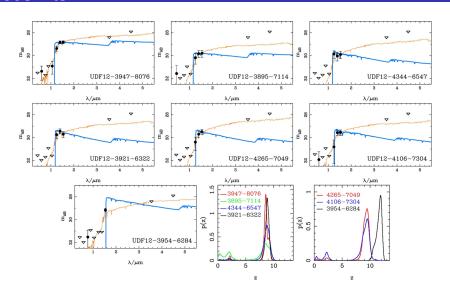
$$E_{AGN} \sim \langle L_{bol} \rangle \Delta t \simeq 1.2 \times 10^{60} \mathrm{erg} (L_{bol}/10^{10} L_{\odot}) (\Delta t/10^8 \mathrm{yr})$$

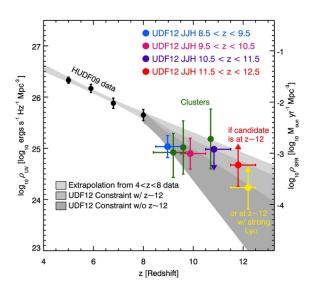

Timescale for energy release in a proto elliptical

We expect a release of $\Delta E \sim 10^{60}$ ergs from a typical protoelliptical but over what time scale?

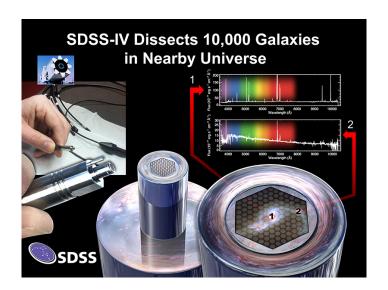

- \bullet The starburst time scale of $\sim 10^7-10^8 \ \text{yrs}$
- \bullet The free-fall time scale of $\sim 10^8 \mbox{ yrs}$
- \bullet The merging time scale of $\sim 10^9 \ \text{yrs}$

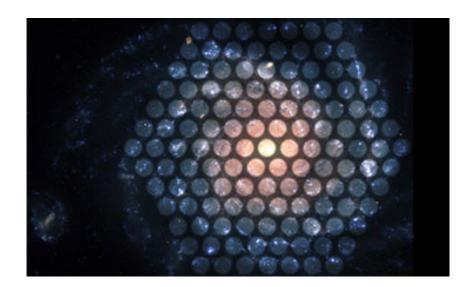
This gives $L_{PG} \sim 10^{11}-10^{12}L_{\odot}$. Given the luminosity distances to $z\sim 6-8$, the expected apparent magnitudes are in the range ~ 26 to 30 mag. A few % of the total energy is in recombination lines, e.g., Ly α . Is there dust obscuration? No: use optical/near-IR, Yes: use submm-FIR surveys


Finding these PG

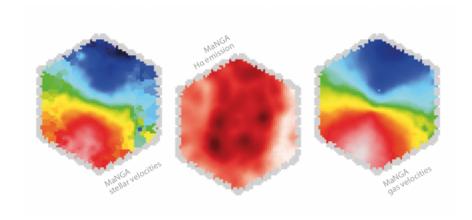

Spectroscopy confirms it

Highest redshift candidate galaxies via photometric redshifts


Madau diagram at high redshift

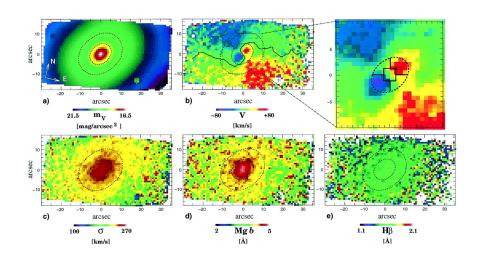

My course on galaxies has covered

- Background material and Overview 1 A brief History of extragalactic research 2 Morphological Classification 3
 Surveys & Quantitative morphology 4 Galaxy Luminosity Functions
- Normal galaxies 5 Spiral and Irregular Galaxies 6 Stellar Kinematics I: Disks 7 Elliptical and Lenticular Galaxies 8 Stellar Kinematics II: 3-D Systems 9 Gas & Dust in Galaxies 10 Population Synthesis
- Interactions & activity
 11 Star Formation & Starburst Galaxies 12 Galaxy Interactions
 & Mergers 13 Galaxy Groups & Clusters 14 Galaxy Nuclei & Nuclear Black Holes 15 Active Galaxies & Quasars
- Formation and evolution 16 The Cosmological Framework 17
 Growth of Structure 18 Galaxy Formation, high z galaxies&
 Evolution 19 Reionization & the IGM 20 Dark Matter &
 Gravitational Lenses


MaNGA survey

Tiling a galaxy with fibres

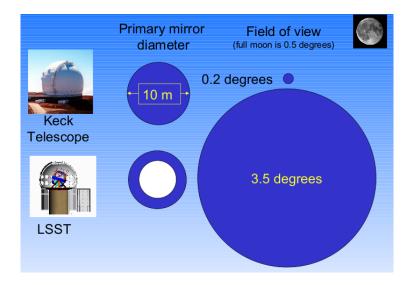
MaNGA survey - kinematics and chemical evolution

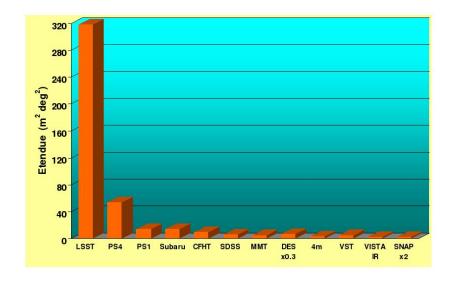

MaNGA in relation to other surveys

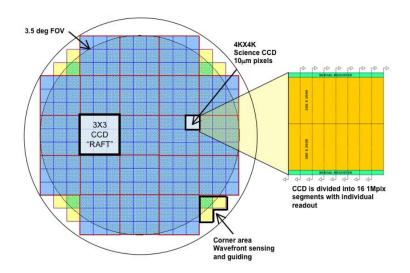
SAURON (lenslets), SAMI, CALIFA (fibers), MUSE (mini-slits) There are now IFU (3D) spectrographs on most large optical telescopes of the world.

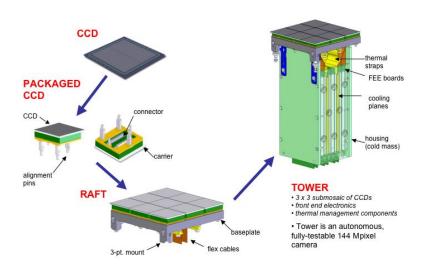
With SDSS V, the local volume mapper program will carry out IFU spectroscopy of the Milky way and nearby galaxies.

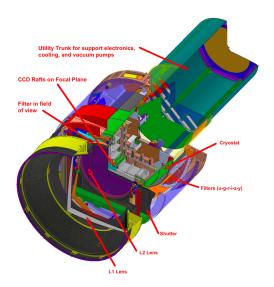
For multi-fiber spectroscopy, the DESI survey with its robotically positioned fibres will obtain spectra for millions of galaxies.


SAURON - now decommisioned


Rubin/LSST Observatory- Cerro Pachon

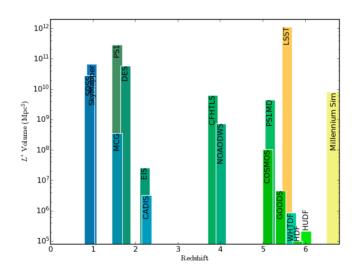

Etendue of Rubin/LSST compared to Keck


Etendue of Rubin/LSST compared to other telescopes

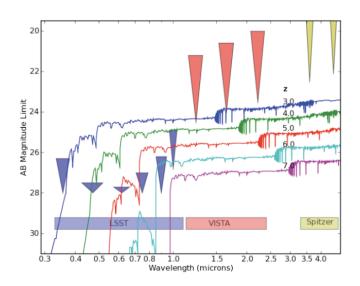

The LSST camera

A LSST raft

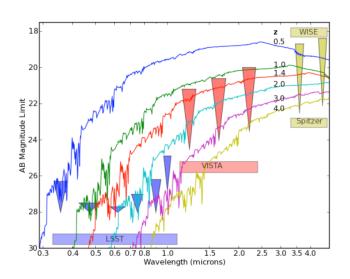
The LSST camera



LSST versus SDSS depth



Many new dwarf galaxies will be detected


L_{*} volume sampled by different surveys

Distant Lyman break galaxies

Distant Red Sequence galaxies

Expected LSST areas of contribution

- Demographics of high redshift populations
- Demographics of LSB and dwarf galaxies
- Mergers, interactions and the environment
- Quantifying the biases and uncertainties
- Clusters and cluster galaxy evolution, intracluster light (intracluster novae)
- Observational confirmation of HOD
- many research projects could be done in citizen science mode.

Several Indian astronomers involved

		1		
IND-IUC	India	Bhalerao, Varun	IIT Bombay	PI
IND-IUC	India	Biswas, Bhaskar	IUCAA	JA
IND-IUC	India	Bose, Sukanta	IUCAA	PI
IND-IUC	India	Chakraborty, Manoneeta	IIT Indore	PI
IND-IUC	India	Chaurasiya, Navin	IUCAA	JA
IND-IUC	India	Stalin, Chelliah Subramonian	IIA	PI
IND-IUC	India	Choudhary, Sunil	IUCAA	JA
IND-IUC	India	Dasgupta, Basudeb	TIFR	PI
IND-IUC	India	Datta, Abhirup	IIT Indore	PI
IND-IUC	India	Ganeshaiah Veena, Punyakoti	TIFR	JA
IND-IUC	India	Khatri, Rishi	TIFR	PI
IND-IUC	India	Kulkarni, Girish	TIFR	PI
IND-IUC	India	Kumar, Harsh	IIT Bombay	JA
IND-IUC	India	Majumdar, Subhabrata	TIFR	PI
IND-IUC	India	Majumdar, Suman	IIT Indore	PI
IND-IUC	India	Mishra, Preetish	IUCAA	JA
IND-IUC	India	Mitra, Ayan	IUCAA	JA
IND-IUC	India	More, Anupreeta	IUCAA	PI
IND-IUC	India	More, Surhud	IUCAA	PI
IND-IUC	India	Ratewal, Amit Kumar	IUCAA	JA
IND-IUC	India	Raychaudhury, Somak	IUCAA	PI
IND-IUC	India	Saha, Kanak	IUCAA	PI
IND-IUC	India	Shukla, Amit	IIT Indore	PI
IND-IUC	India	Smitha, Subramanian	IIA	PI
IND-IUC	India	Sutaria, Firoza	IIA	PI
IND-IUC	India	Swain, Vishwajeet	IIT Bombay	JA
IND-IUC	India	Vaidya, Bhargav	IIT Indore	PI
IND-IUC	India	Wadadekar, Yogesh	NCRA-TIFR	PI

For more information

Rubin/LSST website: www.lsst.org

Galaxies Science consortium: sites.google.com/view/lsstgsc