
Quantum Mechanics: Take-home Assignment 3
IUCAA-NCRA Graduate School

August - September 2016

08 September 2016
To be returned in NCRA Office 236 on 15 September 2016 (between 10:00 – 11:00)

• The deadline for the submission of the solutions of this assignment will be strictly enforced. No marks will be given if
the assignment is not returned in time.

• You are free to discuss the solutions with friends, seniors and consult any books. However, you should understand and
be clear about every step in the answers. Marks may be reduced if you have not understood what you have written
even though the answer is correct.

• Let me know if you find anything to be unclear or if you think that something is wrong in any of the questions.

1. Landau levels: Consider a free electron (ignoring spin) of charge −e moving in a uniform time-independent magnetic
field B.

(a) Show that the vector potential

A =
1

2
(B × x)

produces the correct uniform magnetic field B.

(b) Now orient the axes such that the magnetic field is in the z-direction, i.e., B = Bẑ. Calculate the vector potential
for this case.

(c) Use the gauge variance of B under the transformation A→ A+∇ϕ to show that the quantity

A = −B y x̂

too is an appropriate vector potential. What ϕ did you choose to obtain the new vector potential from the old
one (give your answer up to an additive constant)?

(d) Show that the Hamiltonian for this system can be written as

H =
1

2me

(

Px −
e

c
By

)2

+
1

2me
(P 2

y + P 2

z ).

(e) Show that [H,Px] = [H,Pz] = 0.

(f) Given the above commutation relations, we can choose the wave function ψ(x) to be a simultaneous eigenfunction
of H,Px, Pz. Let ψpx

(x) be the eigenfunction of Px with eigenvalue px. Obtain the explicit form of ψpx
(x).

Similarly, write down the explicit form of the eigenfunction ψpz
(z) of Pz. What are the allowed ranges of the

eigenvalues px and pz?

(g) Try a solution of the form
ψ(x) = ψpx

(x) ψpz
(z) ξ(y),

and show that the Schrödinger equation Hψ = Eψ reduces to an equation which resembles a simple harmonic
oscillator system in the y-direction. Hence show that the energy eigenvalues are given by

En = (2n+ 1)~ωL +
p2z
2me

, n = 0, 1, 2, . . . ,

where

ωL =
eB

2mec

is the Larmor angular frequency.

[3+2+3+4+2+3+6]
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2. Zeeman effect: Let a hydrogen atom be placed in a uniform magnetic field B.

(a) Assuming the charge of the electron to be −e, show that the non-relativistic Schrödinger equation for the system
(assuming Coulomb gauge) is

[

−
~
2

2me
∇

2 −
e2

r
−

i~e

mec
A ·∇+

e2

2mec2
A2 − µ ·B

]

ψ(x) = Eψ(x)

(b) Show that the linear term in A can be written as

e

2mec
B ·L.

(c) Estimate the order of magnitude of the magnetic field (in Gauss) that is required to make the quadratric term in
A comparable to the linear term. How does this compare with the typical magnetic fields observed in the Milky
Way?

(d) Show that, ignoring the quadratic term but including the spin-orbit coupling term, the Schrödinger equation
reduces to

[

−
~
2

2me
∇

2 −
e2

r
+ ξ(r)L · S +

e

2mec
B · (L+ 2S)

]

ψ(x) = Eψ(x),

where symbols are identical to those used in the class.

(e) Assume the magnetic field to be “weak” so that the term involving B can be taken as a perturbation over the
unperturbed Hamiltonian

H0 = −
~
2

2me
∇

2 −
e2

r
+ ξ(r)L · S.

Also orient the axes such that the magnetic field is along the z-direction. Show that the first order corrections to
the energy levels are given by

∆Ej,m,l =

〈

j,m, l

∣

∣

∣

∣

e

2mec
B · (L+ 2S)

∣

∣

∣

∣

j,m, l

〉

=
eB

2mec
[~m+ 〈j,m, l |Sz | j,m, l〉] .

Use the relations derived in the class

∣

∣

∣

∣

j = l ±
1

2
,m, l

〉

= ±

√

l + 1/2±m

2l + 1

∣

∣

∣

∣

l,ml = m−
1

2
,ms =

1

2

〉

+

√

l + 1/2∓m

2l + 1

∣

∣

∣

∣

l,ml = m+
1

2
,ms = −

1

2

〉

,

to show
〈

j = l ±
1

2
,m, l

∣

∣

∣

∣

Sz

∣

∣

∣

∣

j = l ±
1

2
,m, l

〉

= ±
~m

2l + 1
.

Hence show that the energy levels are split into

∆Ej,m,l = ~ωL m

[

1±
1

2l + 1

]

,

where

ωL =
eB

2mec

is the Larmor angular frequency.

Note: In the above derivation, the matrix involving Sz is not diagonal and hence the first order perturbation calculation we did above

is not valid. However, since J = L+S is conserved, one can think of S (and also L) to be “precessing” about S. If we take the time

average of the vector S, only its projection along J survives, thus validating the above calculation.
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(f) If we take the magnetic field to be “strong”, then we can ignore the spin-orbit coupling term and treat the magnetic
field term as perturbation over the unperturbed Hamiltonian

H0 = −
~
2

2me
∇

2 −
e2

r
.

Show that in this case, the energy corrections are given by

∆El,ml,ms
= ~ωL (ml + 2ms).

[2+2+3+2+7+3]

3. Fine-structure of the Balmer series lines: In the class, we saw that the different energy levels of the hydrogen
atom are split because of the relativistic corrections. For example, the Lyman series lines are split into a doublet

1S1/2 ←→ nP1/2, 1S1/2 ←→ nP3/2.

Consider the Balmer series lines which connect the n = 2 state with higher states n > 2.

(a) Write down all the possible allowed transitions (accounting for the fine-structure) between different levels of n = 2
and any n > 2 states. Please give short justifications (based on selection rules) for each of these transitions.

(b) What is the number of distinct components of the Balmer line for a 2←→ n transition (n > 2)?

[3+2]

4. Isotope shift: Let us assume that the nucleus of an hydrogen-like atom, instead of being a point charge Ze, is actually
a uniformly charged sphere of radius R = r0A

1/3, where A is the mass number of the nucleus and r0 ≈ 10−15 m.

(a) Show that the electrostatic potential of the nucleus is given by

V (r) =











Ze2

2R

(

r2

R2
− 3

)

r < R,

−
Ze2

r
r ≥ R

(b) If we write the quantum Hamiltonian operator as

H = H0 +H1,

with

H0 = −
~
2

2µe
∇

2 −
Ze2

r
,

what is the form of H1?

(c) Treating H1 as a small perturbation over H0, show that the first-order energy shift is given by

∆E =
Ze2

2R

ˆ R

0

dr r2 |Rnl(r)|
2

(

r2

R2
+

2R

r
− 3

)

,

where Rnl(r) is the radial part of the wave function.

(d) Argue that R is small enough so that we can approximate Rnl(r) ≈ Rnl(0) in the above integral. Hence calculate
∆E. You should look up the forms of the hydrogenic wave functions from any text book or other resource.

(e) Let δE be the energy difference between two isotopes whose charge distributions have radii R and R + δR,
respectively. Show that to the first order in δR, the energy difference is

δE ≈
4e2

5
R2

Z4

a3µn
3

δR

R
,

where

aµ =
~
2

µee2
.

[4+1+2+5+1]
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