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. Riemann-zeta function: (i) Expand the function
fl)=2% —7m<z<7

in a Fourier series and show that
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(ii) Put = 7 and show that the value of the zeta function {(2) is given by
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. Triangular wave: A triangular wave is represented by

fz) =

T for O<z<m
—x for —-wT<x<0

Represent f(z) by a Fourier series.

. Fourier coefficients using minimization techniques: A function f(z) (assumed to be quadratically integrable) is
to be represented by a finite Fourier series. A convenient measure of the accuracy of the series is given by the integrated
square of the deviation,
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Show that the requirement that Ay be minimized, i.e.,
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for all n, leads to choosing f, as given in standard formulae for the Fourier series.

. Fourier Transform of a Bessel function: Use the integral representation of the Bessel function
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to show that its Fourier transform can be expressed as
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Noting that the delta function is never satisfied for |k| > 1, and that there are two values of the 6 which satisfy it for

|k| < 1, show that
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. Fourier transform for even/odd functions: (i) Suppose the function f(x) is even. Then show that the Fourier
transform is given by the cosine transform

f(k) :2/O°Od$ f(z) coskx

What is the inverse relation?

(ii) Repeat the above problem for the case when f(z) is an odd function.
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Properties of Fourier transform: (i) Show that f(—k) = f*(k) is a necessary and sufficient condition for f(z) to
be real.

(ii) Show that f(—k) = —f*(k) is a necessary and sufficient condition for f(z) to be pure imaginary.

Fourier transform of an exponential function: (i) Calculate the Fourier transform of

fty=et a>0
(ii) Calculate the Fourier transform of

e for t>0
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where a > 0 as before.

(iii) Using the above results, show that
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(iv) Now consider another function
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Show that lim,_, g(t) = h(t), where g(t) is defined in (ii). Then calculate the Fourier transform h(w).

(v) Show that we can express the step function as

o(t) = ~[h(t) +1]

DO =

What is the Fourier transform of O(¢)?

Some symmetry properties of Fourier transform: If f (w) is the Fourier transform of f(¢), then show that
(i) the Fourier transform of f(at) is f(w/a)/|al

(i) the Fourier transform of f(t — tg) is €% f(w)

Repeated application of Fourier transform operator: Let the Fourier transform operator be defined as
() @) = [y e 1.

Show that the operator (27r)*1ﬁ‘2 is the parity operator.

Dirac delta function: Verify that the function

is a Dirac delta function by showing that it satisfies the definition of a Dirac delta function:

oo

d(b f(¢) [1 Z einl(¢—¢,)

2m
o = (o)

m=—0oo

Hint: Represent f(¢) by an exponential Fourier series.

Linear quantum oscillator: A linear quantum oscillator in its ground state has a wave function
W(z) = o~ 1/2p—1/4 efx2/2a2

Show that the corresponding momentum function is

d(p) = al/2p—1/Ap—1/2 e—a2p2/2h2



12. Fourier transform of integrals: Show that if f(z) has a Fourier transform f (k), then the Fourier transform of its
integral

g9(x) = [ dy f(y)
is given by .
a(k) = =L T (k) + 7 (0)5(k)

13. Symmetry properties of DFT: The functions f(tx) and f (wy) are discrete Fourier transforms of each other:
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Derive the following symmetry relations:
(i) If f(tx) is real, then

(ii) If f(¢x) is pure imaginary, then



