Mathematical Physics I: Mid-term Examination HRI Graduate School August - December 2010

07 October 2010 Duration: 3 hours

- The paper is of 100 marks. Attempt all the questions.
- You are free to consult your class notes during the examination.
- Let me know if you find anything to be unclear or if you think that something is wrong in any of the questions.

1. Compute the product in the given ring.

- (i) [12][16] in \mathbb{Z}_{24}
- (ii) [16][3] in \mathbb{Z}_{32}
- (iii) [11][-4] in \mathbb{Z}_{15}
- (iv) [20][-8] in \mathbb{Z}_{26}
- (v) ([2], [3]) ([3], [5]) in $\mathbb{Z}_5 \times \mathbb{Z}_9$
- (vi) ([-3], [5]) ([2], [-4]) in $\mathbb{Z}_4 \times \mathbb{Z}_{11}$

 $[2.5 \times 4 + 3.5 \times 2 = 17]$

- 2. Prove the following results for a group (G,*).
 (i) The identity element e is unique.
 - (ii) Each $a \in G$ has a unique inverse a^{-1} .

[4+4=8]

3. Show that every element of SU(2) has the form

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

where $a = d^*$ and $b = -c^*$. Remember that SU(2) is the group of 2×2 unitary matrices with determinant 1 and * denotes complex conjugation.

[6]

4. The commutator [f,g] of two operators in L(V,V) is defined as [f,g] = fg - gh. Prove the Jacobi identity [[f,g],h] + [[g,h],f] + [[h,f],g] = 0.

5. In the following, determine whether the vector spaces V and W are isomorphic. Justify your answers. (i) Let $V = \{A \in M^{3,3}(\mathbb{R}) \mid A = A^T\}$ and $W = \{A \in M^{3,3}(\mathbb{R}) \mid A = -A^T\}$. A^T denotes the transpose of A. (ii) Let $V = \{f(t) \in P_5(\mathbb{R}) \mid f(t) = f(-t)\}$ and $W = P_3(\mathbb{R})$. Note that $P_n(\mathbb{R})$ is the space of polynomials of degree $\leq n$ having real coefficients. (iii) Let $V = L\left(P_2(\mathbb{R}), M^{2,2}(\mathbb{R})\right)$ and $W = L(M^{2,3}(\mathbb{R}), \mathbb{R}^2)$.

[2+2+2=6]

6. Let f be a linear operator on V. One can define the exponential of a linear operator through the convergent infinite series

$$e^f \equiv \exp(f) = \sum_{j=0}^{\infty} \frac{f^j}{j!}$$

Suppose $f : \mathbb{R}^2 \to \mathbb{R}^2$ such that f(x, y) = (-y, x). Show that

$$e^{\alpha f} = f \sin \alpha + 1 \cos \alpha$$

where α is a scalar.

What is the result of applying $e^{\alpha f}$ on (x, y)?

7. Let $\mathbf{v} \in \mathbb{R}^3$ be a nonzero vector. Show that $\Pi_v : \mathbb{R}^3 \to \mathbb{R}^3$ defined by $\Pi_v(\mathbf{w}) = \mathbf{v} \times \mathbf{w}$ is a homomorphism of vector spaces over \mathbb{R} , where $\mathbf{v} \times \mathbf{w}$ is the vector (cross) product of \mathbf{v} and \mathbf{w} . Determine the kernel and the image of Π_v .

[6]

- 8. Let E be a linear operator on V such that $E^2 = E$. Such an operator is termed a projection. Let U be the image of V and W be the kernel.
 - (i) If $\alpha \in U$, then show that $E(\alpha) = \alpha$, i.e., E is the identity map on U.
 - (ii) If $E \neq 1$, then show that $E(\beta) = 0$ for some $\beta \neq 0 \in V$, i.e., the kernel is not simply the set $\{0\}$.
 - (iii) Show that $U \cap W = \{0\}$.

[3+3+2=8]

9. Let $V = \mathbb{C}^4$ with the standard inner product. Let f be the linear operator on V whose matrix with respect to the standard basis for V is given by:

$$\mathsf{f} = \left(\begin{array}{rrrr} 0 & 0 & 0 & -\mathbf{i} \\ 0 & 0 & \mathbf{i} & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{array} \right)$$

- (i) Find an orthonormal basis for V consisting of eigenvectors of f.
- (ii) Find an orthogonal matrix P and a diagonal matrix D such that $D = P^{-1}fP$.

[4+4=8]

10. Let V be the vector space of 2×2 matrices with the usual basis

 $\left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right), \right\}$

Let $M = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and g be the linear operator on V defined by g(A) = MA. Find the matrix representation of g relative to the above usual basis of V.

	۰٦.
h	۱I
10	1

11. Let $V = \mathbb{C}^4$ with the standard inner product. Let

$$W = \{ x = (x_1, x_2, x_3, x_4) \in V | \sqrt{2x_1 - x_3} = 0, x_1 - ix_2 + x_4 = 0 \}.$$

- (i) Find an orthonormal basis for W.
- (ii) Find an orthonormal basis for W^{\perp} .

[7+7=14]

12. Let V be the vector space of polynomials $\alpha(t)$ having degree ≤ 2 with the inner product $\langle \alpha, \beta \rangle = \int_{1}^{1} dt \, \alpha(t)\beta(t)$. Start with the usual basis $\{1, t, t^2\}$ and apply Gram-Schmidt algorithm to obtain an orthogonal basis $\{f_0, f_1, f_2\}$. Normalise the new basis such that $f_i(t = 1) = 1$. Can you identify the series of polynomials?

[7]