ASTRONOMY AND ASTROPHYSICS: Assignment 2 FERGUSSON COLLEGE, PUNE Savitribai Phule Pune University January – April 2020

10 May 2020

To be uploaded at https://forms.gle/anUBjiZivmK3rf4X7 on or before 20 May 2020

- The deadline for the submission of the solutions of this assignment will be strictly enforced. No marks will be given if the assignment is not submitted in time.
- Let me know if you find anything to be unclear or if you think that something is wrong in any of the questions.
- 1. Orbits in the Schwarzschild spacetime: Consider a freely moving spaceship in the Schwarzschild metric

$$ds^{2} = -\left(1 - \frac{2GM}{r}\right)dt^{2} + \frac{dr^{2}}{1 - 2GM/r} + r^{2} d\theta^{2} + r^{2} \sin^{2} \theta d\phi^{2},$$

where all the symbols have their usual meanings and we are using units where c = 1. We have already derived the geodesic equations (assuming $\theta = \pi/2$) for t and ϕ :

$$\left(1 - \frac{2GM}{r}\right)\dot{t} = k,$$
$$r^2 \dot{\phi} = l,$$

where the overdots represent derivative with respect to the proper time τ .

- (a) Using the condition $g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu} = -1$, find the equation for the radial velocity \dot{r} and radial acceleration \ddot{r} . Note that the resulting equations should *not* contain any *t*-dependent or ϕ -dependent terms.
- (b) Calculate the angular speed $\Omega_{\infty} \equiv d\phi/dt$ of the spaceship as a function of r as measured by an observer at infinity.
- (c) If we further assume that the spaceship is moving in a circular orbit, we can put $\ddot{r} = \dot{r} = 0$. Using these two conditions, eliminate k and l from the equations and find Ω_{∞} as a function of r.
- (d) Suppose $r = \alpha GM$, where α is a positive number. Then find the period $P_{\infty} \equiv 2\pi/\Omega_{\infty}$ of the orbit as a function of α as seen by the observer at infinity.
- (e) Compute the angular speed $\Omega_{\text{prop}} \equiv d\phi/d\tau$ as measured by an observer in the spaceship in the circular orbit. Also compute the corresponding period P_{prop} .
- (f) What happens to P_{prop} when $\alpha < 3$? Can you explain this result?
- (g) Find the period of a circular orbit in the Newtonian case and compare with the two periods P_{∞} and P_{prop} .

[4 + 2 + 5 + 2 + 3 + 2 + 2]