ASTRONOMY AND ASTROPHYSICS: Assignment 2

FERGUSSON COLLEGE, PUNE
Savitribai Phule Pune University
January - April 2020
10 May 2020
To be uploaded at https://forms.gle/anUBjiZivmK3rf4X7 on or before 20 May 2020

- The deadline for the submission of the solutions of this assignment will be strictly enforced. No marks will be given if the assignment is not submitted in time.
- Let me know if you find anything to be unclear or if you think that something is wrong in any of the questions.

1. Orbits in the Schwarzschild spacetime: Consider a freely moving spaceship in the Schwarzschild metric

$$
\mathrm{d} s^{2}=-\left(1-\frac{2 G M}{r}\right) \mathrm{d} t^{2}+\frac{\mathrm{d} r^{2}}{1-2 G M / r}+r^{2} \mathrm{~d} \theta^{2}+r^{2} \sin ^{2} \theta \mathrm{~d} \phi^{2}
$$

where all the symbols have their usual meanings and we are using units where $c=1$. We have already derived the geodesic equations (assuming $\theta=\pi / 2$) for t and ϕ :

$$
\begin{array}{r}
\left(1-\frac{2 G M}{r}\right) \dot{t}=k \\
r^{2} \dot{\phi}=l
\end{array}
$$

where the overdots represent derivative with respect to the proper time τ.
(a) Using the condition $g_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}=-1$, find the equation for the radial velocity \dot{r} and radial acceleration \ddot{r}. Note that the resulting equations should not contain any t-dependent or ϕ-dependent terms.
(b) Calculate the angular speed $\Omega_{\infty} \equiv \mathrm{d} \phi / \mathrm{d} t$ of the spaceship as a function of r as measured by an observer at infinity.
(c) If we further assume that the spaceship is moving in a circular orbit, we can put $\ddot{r}=\dot{r}=0$. Using these two conditions, eliminate k and l from the equations and find Ω_{∞} as a function of r.
(d) Suppose $r=\alpha G M$, where α is a positive number. Then find the period $P_{\infty} \equiv 2 \pi / \Omega_{\infty}$ of the orbit as a function of α as seen by the observer at infinity.
(e) Compute the angular speed $\Omega_{\mathrm{prop}} \equiv \mathrm{d} \phi / \mathrm{d} \tau$ as measured by an observer in the spaceship in the circular orbit. Also compute the corresponding period $P_{\text {prop }}$.
(f) What happens to $P_{\text {prop }}$ when $\alpha<3$? Can you explain this result?
(g) Find the period of a circular orbit in the Newtonian case and compare with the two periods P_{∞} and $P_{\text {prop }}$.

$$
[4+2+5+2+3+2+2]
$$

