ASTRONOMY AND ASTROPHYSICS: Assignment 1

FERGUSSON COLLEGE, PUNE
Savitribai Phule Pune University
January - April 2020
04 March 2020
To be returned in the class on 14 March 2020

- The deadline for the submission of the solutions of this assignment will be strictly enforced. No marks will be given if the assignment is not returned in time.
- You are free to discuss the solutions with friends, seniors and consult any books.
- Let me know if you find anything to be unclear or if you think that something is wrong in any of the questions.

1. Surface of a sphere: The metric on a surface of a sphere of radius r is given by

$$
\mathrm{d} s^{2}=r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)
$$

(a) Find all the Christoffel symbols $\Gamma_{j k}^{i}$.
(b) Find all the components of the Ricci tensor $R_{i j}$.
(c) Find the Ricci scalar R.

$$
[6+4+2]
$$

2. Covariant derivatives do not commute in curved spacetimes: Evaluate the commutator

$$
\nabla_{\mu} \nabla_{\nu} A^{\alpha}-\nabla_{\nu} \nabla_{\mu} A^{\alpha}
$$

where A^{α} is an arbitrary four-vector. Express your answer in terms of the Riemann curvature tensor.
3. Godesics in Schwarzschild spacetime: Consider the motion of a massive particle in a spacetime with metric

$$
\mathrm{d} s^{2}=-\left(1-\frac{r_{g}}{r}\right) \mathrm{d} t^{2}+\frac{\mathrm{d} r^{2}}{1-r_{g} / r}+r^{2} \mathrm{~d} \phi^{2}
$$

where $r_{g}=2 G M$ (assuming $c=1$), M being the mass of the spherically symmetric source giving rise to the gravitational field. Let us restrict to $r>r_{g}$.
(a) Starting with the 'Lagrangian' $\mathcal{L}=g_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}$, work out the t and ϕ components of the geodesic equation. Here overdots denote derivatives with respect to the proper time τ, i.e., $\equiv \mathrm{d} / \mathrm{d} \tau$.
(b) Use the constraint equation $g_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}=-1$ to show

$$
\frac{1}{2} \dot{r}^{2}-\frac{G M}{r}+\frac{l^{2}}{2 r^{2}}-\frac{G M l^{2}}{r^{3}}=\mathcal{E}
$$

where \mathcal{E} and l are constants with usual meanings.

