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• These problems are for your own practice and will not be graded. They are designed to help you prepare for the
mid-term and final examinations. However, I strongly encourage you to ask questions and discuss the solutions.

• If you spot any potential errors or find a question unclear, please do not hesitate to let me know.

• You are welcome to consult books, online resources, and discuss the problems with your peers. The key, however, is to
ensure you personally understand the solutions, as this will be vital for your performance in the examinations.

• If you choose to use notation or conventions that differ from those presented in lectures, please define them clearly at
the start and apply them consistently.

1. While studying surface gravity waves in many astrophysical and geophysical contexts (e.g., shallow accretion disks or
ocean waves), the “infinite depth” assumption for the fluid fails. Consider a setup where the upper fluid has ρ+ ≈ 0
(air), while the lower fluid has ρ− = ρ (water). The fluids are static in unperturbed regime V± = 0. Both the fluids are
incompressible and irrotational.

Assume the lower fluid has a finite depth h (rigid bottom at z = −h) while the upper fluid extends to z = +∞.

(a) Apply the boundary condition vz = 0 at z = −h to show that the velocity potential in the lower fluid must take
the form

ϕ ∝ cosh[k(z + h)] ei(kx−ωt).

(b) Derive the new dispersion relation for surface waves

ω2 = gk tanh(kh).

Do you recover the infinite depth result in the limit kh ≫ 1?

(c) Show that in the “shallow water” limit (kh ≪ 1), the waves become non-dispersive with phase velocity vp =
√
gh.

2. Supernovae remnants and stellar interiors are spheres, not infinite planes. To understand the interface instabilities in
such cases, consider a sphere of fluid with density ρin and radius R, surrounded by an infinite fluid of density ρout.
The system is in equilibrium with a radial gravity g(R) pointing inward. Assume both fluids are incompressible and
irrotational.

(a) We perturb the surface radius

r(θ, ϕ, t) = R+ ξ, ξ = AY m
l (θ, ϕ)e−iωt.

The perturbed velocity potential φ satisfies ∇⃗2φ = 0. In spherical coordinates, show that the solutions that do
not diverge are

φin = Bin r
l Y m

l e−iωt (for r < R)

φout = Bout r
−(l+1) Y m

l e−iωt (for r > R).
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(b) Apply the radial velocity matching condition (∂φ/∂r = ξ̇) at r = R to relate constants A, Bin, and Bout.

(c) Apply the pressure continuity condition (linearized Bernoulli equation) to derive the dispersion relation for the
mode l

ω2 = − l(l + 1)

R
g

[
ρout − ρin

(l + 1)ρout + lρin

]
Verify that for high l (short wavelengths where l ≈ kR), this reduces to the planar result.

(d) Discuss the stability for the case of ρin > ρout versus ρin < ρout.

3. Consider a viscous, incompressible fluid flowing steadily between two infinite stationary parallel plates located at y =
±h. The flow is driven by a constant pressure gradient G = −∂P/∂x in the x-direction.

(a) Starting from the Navier-Stokes equation, show that the velocity profile is parabolic

vx(y) =
G

2µ
(h2 − y2),

where µ is the viscosity coefficient of the fluid.

(b) Compute all components of the viscous stress tensor πij .

(c) Using the dissipation function

χ =
∑
ij

πij
∂vi
∂xj

,

calculate the rate of energy dissipation per unit volume as a function of y.

(d) Integrate this over the channel width to find the total power dissipated per unit area of the plates. Show that this
matches the work done by the pressure gradient.

4. Consider a compressible static fluid with density ρ0 and pressure P0. We introduce small perturbations: ρ = ρ0 + ρ1,
P = P0 + c2sρ1, and v⃗ = v⃗1, where cs is the speed of sound, assumed constant. The fluid has a kinematic viscosity
coefficient ν which too can be assumed to be constant.

(a) Linearize the compressible Navier-Stokes equation, retaining the viscosity terms. Do not assume ∇⃗ · v⃗ = 0.

(b) Take the divergence of the linearized momentum equation and combine it with the linearized continuity equation
to derive the equation satisfied by the density perturbation ρ1.

(c) Assume a plane wave solution ρ1 ∝ exp[i(k⃗ · x⃗− ωt)] and show that the dispersion relation is

ω2 = k2c2s − iωk2
(
4

3
ν

)
.

(d) For small viscosity (ν ≪ c2s/ω), solve for ω and find the spatial attenuation length of the sound wave.

5. The equation describing evolution of a thin accretion disk is given by

∂Σ(R, t)

∂t
=

3

R

∂

∂R

[
R1/2 ∂

∂R

(
ν Σ(R, t) R1/2

)]
,

where Σ(R, t) is the surface density and ν is the coefficient of viscosity.

(a) Assume ν to be a constant. Define dimensionless variables

x =
R

R0
, τ =

12νt

R2
0

,

where R0 is some characteristic scale, to show that the equation becomes

∂Σ(x, τ)

∂τ
=

1

4x

∂

∂x

[
x1/2

∂

∂x

(
Σ(x, τ) x1/2

)]
.

2



(b) Define s = 2x1/2 and F = x1/2 Σ, and show that the equation further reduces to

∂F (s, τ)

∂τ
=

1

s2
∂2F (s, τ)

∂s2
.

(c) The equation can be solved numerically using the difference equation

Fi,α+1 = Fi,α +
∆τ

(∆s)2
1

s2i
[Fi+1,α − 2Fi,α + Fi−1,α] ,

where the coordinates are discretized as

si = i ∆s, i = 1, 2, . . . ,

τα = α ∆τ, α = 1, 2, . . . ,

and the unknown function is discretized as Fi,α = F (si, τα). Write a numerical code to find the solution with the
initial condition

Σ(x, τ = 0) = exp

[
−(x− 1)2

0.005

]
.

Plot the solutions Σ(x, τ) for τ = 0, 0.05, 0.1, 0.15, 0.2 in the range 0.01 ≤ x ≤ 1.5. All the curves should be on
the same plot. Also mention the values of ∆τ and ∆s used, preferably in the title of the plot.
Your submission should be file containing the numerical code you have written. The file should also contain
instructions on how to (compile and) run the code, preferably as a comment at the beginning of the code. Once
the code is run, it should produce the plot.
Hint: Make sure you choose the values of∆τ and∆s appropriately, otherwise the solutions will not be numerically
stable.

6. For a turbulent fluid, the velocity correlation tensor is given by

vi(x⃗) v⃗j(x⃗+ r⃗) =
v2

3

[
g(r)δij + (f(r)− g(r))

rirj
r2

]
, g(r) = f(r) +

r

2

df(r)

dr
,

where f(r) is the longitudinal correlation function.

Show that the energy spectrum E(k) (the kinetic energy per unit mass per unit wavenumber) can be written in terms
of the longitudinal correlation function f(r) as

E(k) =
v2

3π

∫ ∞

0
dr f(r)

[
2kr sin(kr)− (kr)2 cos(kr)

]
.

7. Consider the warm neutral medium (WNM) of the ISM with the following typical parameters:

• Outer scale of turbulence (injection scale): L ∼ 100 pc

• RMS velocity fluctuations at scale L: VL ∼ 10 km s−1

• Number density: n ∼ 1 cm−3

• Temperature: T ∼ 8000 K

(a) Estimate the kinematic viscosity ν of the gas. Assume ν ≈ 1
3vthλmfp, where vth =

√
kBT/mp and the mean free

path λmfp ≈ 1/(nσ) with cross-section σ ≈ 10−15 cm2 (appropriate for neutral hydrogen collisions). Compare
the value with that of water (ν ≈ 0.01 cm2 s−1) and explain the physical reason for the difference.

(b) Calculate the Reynolds number R for the WNM.

(c) Calculate the Kolmogorov length scale η = (ν3/ϵ)1/4, where ϵ is the energy dissipation rate per unit mass. Express
your answer in Astronomical Units (AU).

(d) Compare η to the mean free path λmfp. Is the assumption of a fluid continuum valid at the dissipation scale?
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8. In the theory of turbulent diffusion, the displacement of a fluid particle is given by

x⃗(t) =

∫ t

0
dt′ v⃗L(t

′),

where v⃗L(t) is the Lagrangian velocity of the particle. The mean square displacement x⃗2(t) can be expressed in terms
of the Lagrangian velocity correlation function

R(τ) =
v⃗L(t) · v⃗L(t− τ)

v2
,

where v2 is the mean square velocity.

(a) Show that

x⃗2(t) = 2v2
∫ t

0
dτ (t− τ)R(τ).

(b) Assume the Lagrangian velocity correlation function decays exponentially:

R(τ) = e−|τ |/τcor ,

where τcor is the correlation time.
Perform the integration explicitly to find the expression for x⃗2(t) valid for all times t. Show that for t ≪ τcor , the
particles move ballistically (x⃗2 ∝ t2). Show that for t ≫ τcor, the particles move diffusively (x⃗2 ∝ t). Define an
effective turbulent diffusion coefficient Dturb from your result.
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