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• These problems are for your own practice and will not be graded. They are designed to help you prepare for the
mid-term and final examinations. However, I strongly encourage you to ask questions and discuss the solutions.

• If you spot any potential errors or find a question unclear, please do not hesitate to let me know.

• You are welcome to consult books, online resources, and discuss the problems with your peers. The key, however, is to
ensure you personally understand the solutions, as this will be vital for your performance in the examinations.

• If you choose to use notation or conventions that differ from those presented in lectures, please define them clearly at
the start and apply them consistently.

1. Consider a plane-parallel isothermal atmosphere with constant sound speed cs and uniform gravity g pointing in the
−z-direction. Assume the gas to be inviscid. Assume an ideal gas equation of state.

(a) The unperturbed atmosphere is in hydrostatic equilibrium. Find the dependence of the unperturbed density ρ =
ρ0(z) and show that it can be written as ρ0(z) ∝ e−z/H . Write the scale height H in terms of c2s and g. What is
the velocity v⃗ of the unperturbed system?

(b) Now assume that the system is perturbed and the perturbations are so small that we can work in the linear order.
If ρ1 and v1z are density and velocity perturbations, respectively, then use the continuity and Euler equations to
write the equations satisfied by ρ1 and v1z . Manipulate these equations to write a single equation for ρ1.

(c) Assume solutions of the form ρ1(z, t) = ρ̃1(z) e
−iωt, and write the differential equation satisfied by ρ̃1(z). What

are the solutions of this equation?

(d) What should be the condition on ω for the system have propagating sound waves? Write down the full solution
for ρ1(z, t) in such case.

(e) Assuming the system allows sound waves, what is the dispersion relation between ω and wave number k? Give
a qualitative plot of the dispersion relation ω vs k.

(f) Show that the velocity perturbations have solutions of the form v1z ∝ ez/2He±ikz−iωt. What happens to these
perturbations with increasing height of the atmosphere?

2. Consider a general compressible fluid element in a star in hydrostatic equilibrium with background density ρ0(z), pres-
sure P0(z), and temperature T0(z), where we have assumed plane stellar geometry with z being the vertical coordinate
(pointing upwards). The gravitational acceleration is g downwards (constant). Consider a “blob” displaced adiabatically
by ξ upwards, with its pressure equalizing with the surroundings immediately.

(a) Show that the density difference between the blob and the environment at z + ξ is

δρ = ρblob − ρ0 =

[
−
(
1− 1

γ

)
ρ0(z)

P0(z)

(
dP0

dz

)
+

ρ0(z)

T0(z)

(
dT0

dz

)]
ξ,

where assume the fluid to follow the ideal gas law and γ is the adiabatic index.

1



(b) Show that the equation of motion for the blob can be written as

d2ξ

dt2
+N2ξ = 0,

where N is the Brunt-Väisälä frequency defined as

N2 =
g

T0(z)

[(
dT0

dz

)
−
(
1− 1

γ

)
T0(z)

P0(z)

(
dP0

dz

)]
.

Hence derive the Schwarzschild Criterion for stability against convection.

3. Real fluids have viscosity, which dissipates energy. Let us model such fluid by adding a kinematic viscosity term to the
linearized momentum equation for perturbations

∂v⃗1
∂t

= − c2s
ρ0

∇ρ1 + ν∇2v⃗1.

Assume no gravity for this problem.

(a) Assume a plane wave solution propagating along the x-axis ∝ ei(kx−ωt) and derive the dispersion relation. Use
the linearized continuity equation with uniform background density.

(b) Show that for small viscosity (ν ≪ cs/k), the wave oscillates at the sound speed but decays exponentially with a
timescale τ . Find the expression for the decay timescale τ .

4. Consider the Burger’s equation in the presence of viscosity

∂v(x, t)

∂t
+ v(x, t)

∂v(x, t)

∂x
= ν

∂2v(x, t)

∂x2
,

where ν is the coefficient of viscosity, assumed to be constant.

Let us assume that there exist travelling wave solutions of the form

v(x, t) = v(x− c0t),

where c0 > 0 is a constant. The initial conditions are given by

v(x, t = 0) = v2 at x → −∞,

= 0 at x → ∞,

=
v2
2

at x = 0,

∂v(x, t = 0)

∂x
= 0 at x → ±∞,

where v2 > 0.

(a) Define s = x− c0t and show that the Burger’s equation reduces to a ordinary differential equation

ν
d2v

ds2
− v

dv

ds
+ c0

dv

ds
= 0.

(b) Integrate the equation once. Use the boundary conditions to show that the resulting differential equation has the
form

ν
dv

ds
− 1

2
v2 + c0v = 0,

and the constant is given by c0 = v2/2.

(c) Integrate once more and obtain the solution v(x, t), ensuring all boundary conditions are satisfied.
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(d) Make qualitative plots of the solutions for different times, and for different values of viscosity ν, and interpret
them.

(e) Can you use the solutions to characterize the thickness of the shock?

5. Consider a weak shock where the pressure jump is small, i.e.,

P2

P1
= 1 + δ, δ ≪ 1.

(a) Using the Rankine-Hugoniot relations, show that the density jump is given by

ρ2
ρ1

= 1 +
δ

γ
+

1− γ

2γ2
δ2 +

(γ − 1)2

4γ3
δ3 +O(δ4).

Assume an ideal gas with constant adiabatic index γ.

(b) Derive the expression for the entropy change ∆s = s2 − s1 across the shock for an ideal gas and show that the
entropy jump is of the third order in shock strength

∆s

cv
≈ γ2 − 1

12γ2
δ3.

Interpret the physical meaning of this result.

6. The Sedov-Taylor solution is usually derived for a uniform medium (ρ = const). However, many supernovae occur in
the wind of the progenitor star (e.g., Wolf-Rayet stars), where density decreases with radius.

(a) Let a supernova with energy E explode into a surrounding medium with a density profile ρ(r) = Ar−α, where A
is a constant and α < 3. Using the assumption of self-similarity and dimensional analysis, derive the power-law
expansion scaling for the shock radius rsh(t) in terms of E,A, t, and α.

(b) Show that for the specific case of a steady stellar wind (α = 2), the shock expands as rsh ∝ t2/3.

(c) Calculate the shock velocity vsh(t) for the α = 2 case. Does the shock decelerate faster or slower than in the
uniform medium case (α = 0)? Explain the physical reason.

7. Consider a young supernova remnant (SNR) approximately 1000 years after the explosion. Assume it is in the Sedov-
Taylor phase. The explosion energy is E = 1051 erg and the surrounding ISM number density is n0 = 1 cm−3 (assume
mean molecular weight µ ≈ 0.6).

(a) Calculate the current radius rsh (in parsecs) and the shock velocity vsh (in km/s).

(b) Using the strong shock approximation, calculate the immediate post-shock temperature Ts. Express your answer
in Kelvin and in keV (kBT ).

(c) If the dominant cooling mechanism is thermal bremsstrahlung, the cooling rate per unit volume is Λ ≈ 2 ×
10−27neniT

1/2 erg cm−3 s−1. Estimate the cooling time tcool ≈ 3nkBT/Λ for the post-shock gas. Compare tcool
with the age of the SNR. Is the assumption of an adiabatic (Sedov) shock justified?

8. In astrophysical disks and planetary atmospheres, it is often convenient to work in a rotating reference frame. Consider a
frame rotating with a constant angular velocity Ω⃗ relative to an inertial frame. The Euler equation in this frame includes
the Coriolis and centrifugal forces.

(a) Show that the centrifugal term can be written as the gradient of a potential: Ω⃗ × (Ω⃗ × x⃗) = ∇⃗Φcent. Find the
expression for Φcent.

(b) Show that for a steady barotropic flow in this rotating frame, the quantity

Hrot =
1

2
v2 +

∫
dP

ρ
+Ψ+Φcent

is conserved along streamlines. Does the Coriolis force play a role in the energy budget? Explain why or why not
based on your derivation.
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9. Consider a spherically symmetric accretion of gas onto a star of mass M∗. Let the flow of gas be steady, i.e., the mass
accretion rate is constant, and no physical quantity has any explicit dependence on time. The radial velocity vr(r) can
be taken to be a monotonically decreasing function of r.

(a) Starting from the continuity and Euler equations, show that vr(rc) = cs(rc), where the critical radius rc is defined
through the equation

rc =
GM∗
2c2s(rc)

.

The quantity cs(r) is the sound speed which, in general, is a function of r. You can assume that the gravity is
provided entirely by the central mass.

(b) Let us assume an equation of state of the form P ∝ ργ , with 1 < γ < 5/3. Show that

1

2
v2r +

c2s
γ − 1

− GM∗
r

= constant.

(c) Fix the constant using the boundary condition that vr → 0 at r → ∞ and show that

c2s
γ − 1

= −1

2
v2r +

c2s,ISM
γ − 1

+
GM∗
r

,

where cs,ISM = cs(r → ∞).

(d) It is possible to relate the quantities at r → ∞ to those at r = rc. In particular, show that

c2s(rc) = c2s,ISM
2

5− 3γ
,

ρ(rc) = ρISM

(
2

5− 3γ

)1/(γ−1)

,

where ρISM = ρ(r → ∞).

(e) Show that the accretion rate is given by

Ṁ = π(GM∗)
2 ρISM
c3s,ISM

(
2

5− 3γ

)(5−3γ)/(2γ−2)

.

Write down the expression for γ = 5/3.

(f) Using typical values of density and temperature of the interstellar medium (ISM), and assuming M∗ ∼ M⊙, find
an order of magnitude estimate of Ṁ in units of M⊙/yr. Suppose 1% of this mass in converted into radiation, then
estimate the luminosity of the system in units of erg s−1. Compare this luminosity with typical solar luminosity.

10. Consider the relation between angular velocity Ω and eccentricity e for a Maclaurin spheroid

Ω2

2πGρ0
=

√
1− e2

e3
(3− 2e2) sin−1(e)− 3(1− e2)

e2

(a) Perform a rigorous asymptotic expansion of this expression in the limit e → 0 (slow rotation) to show that
Ω2 ∝ e2.

(b) Perform the expansion in the limit e → 1 (high flattening). Show that Ω does not behave monotonically but
reaches a maximum.

(c) Numerical Task: Plot the function Ω2/(2πGρ0) vs e for 0 ≤ e < 1. Determine the value of e (to 3 significant
figures) where the rotation speed is maximized. What is Ωmax in units of

√
Gρ0?

11. Consider a star that is significantly flattened due to rapid rotation. Assume it can be modelled as a central point mass
M with a massless rotating envelope.
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(a) Show that for such a model, the surface of the star is defined by

Φeff = −GM

r
− 1

2
Ω2r2 sin2 θ = const.

(b) Using Von Zeipel’s theorem (Teff ∝ g
1/4
eff ), where geff is the local effective gravity, derive an expression for the ratio

of the effective temperature at the pole (Tp) to the effective temperature at the equator (Teq) in terms of the ratio
of polar to equatorial radii (Rp/Req).

(c) What happens when Req = 1.5Rp? Explain the result physically.
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