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• These problems are for your own practice and will not be graded. They are designed to help you prepare for the
mid-term and final examinations. However, I strongly encourage you to ask questions and discuss the solutions.

• If you spot any potential errors or find a question unclear, please do not hesitate to let me know.

• You are welcome to consult books, online resources, and discuss the problems with your peers. The key, however, is to
ensure you personally understand the solutions, as this will be vital for your performance in the examinations.

• If you choose to use notation or conventions that differ from those presented in lectures, please define them clearly at
the start and apply them consistently.

1. Consider a gas of classical particles described by the Boltzmann equation for a distribution function f(x⃗, p⃗, t). Show
that, for a uniform gas with no external forces, the quantity

H =

∫
d3p f(p⃗, t) ln f(p⃗, t),

can never increase with time. Hence show that the distribution function approaches the Maxwell-Boltzmann distribu-
tion at late times. Assume binary elastic collisions and the standard Boltzmann collision integral.
Hint: You may need to use the fact that elastic collisions are invariant under time reversal and parity.

2. Show that the pressure tensor Pij corresponding to an isotropic distribution is diagonal Pij = P δij . Also show that

P =
4π

3m

∫ ∞

0
dp p4 f(x⃗, p, t).

Assuming f to be given by a Maxwell-Boltzmann distribution

f ∝ exp

(
− p2

2mkBT

)
,

show that P = nkBT .

3. Consider a collection of photons. Let the distribution function be f(x⃗, p⃗, t).

(a) Show that the number density of photons nγ and the energy density uγ at a position x⃗ can be expressed as:

nγ =

∫
d3p f, uγ =

∫
d3p (cp) f.

(b) In radiative transfer, we use specific intensity Iν(x⃗, n̂, t), defined as the energy per unit area, per unit time, per
unit solid angle, per unit frequency. Using the relation d3p = p2 dp dΩ and p = hν/c, prove that

Iν =
h4ν3

c2
f.
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(c) In the absence of interactions (collisions), the distribution function follows the collisionless Boltzmann Equation
(CBE)

∂f

∂t
+ ˙⃗x · ∇⃗f + ˙⃗p · ∇⃗pf = 0.

For photons in a vacuum (no gravity), ˙⃗p = 0. Using ˙⃗x = cn̂ (where n̂ is the unit vector of propagation), show that
the CBE reduces to

1

c

∂Iν
∂t

+ n̂ · ∇⃗Iν = 0,

which is the radiative transfer equation in vacuum.

(d) The differential equation can be solved by the method of characteristics. Show that the “characteristic curves” are
straight lines in space-time defined by:

dx⃗

ds
= n̂,

where s is an affine parameter along the curve. Show that along these specific trajectories (the ray paths), the
specific intensity Iν remains constant, i.e.,

dIν
ds

= 0.

4. Consider the internal energy equation for fluids

ρ
dE
dt

= −P
(
∇⃗ · v⃗

)
− ∇⃗ · q⃗ +

∑
i,j

πij
∂vj
∂xi

,

where E is the specific internal energy, P is the pressure, v⃗ is the fluid velocity, q⃗ is the heat flux vector, and πij is the
viscous stress tensor.

(a) Using the internal energy equation and assuming the thermodynamic relation for an ideal gas

Tds = dE + Pd

(
1

ρ

)
,

where s is the specific entropy, derive the evolution equation for entropy.

(b) Show that in the absence of heat flux and viscosity (Euler limit), the flow is isentropic (adiabatic).

(c) Using the Fourier law (q⃗ = −K∇⃗T ) and the Newtonian viscous stress

πij = 2µ

(
Λij −

1

3
δij(∇⃗ · v⃗)

)
, Λij =

1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
,

where µ is the coefficient of shear viscosity, show that the entropy of the system must monotonically increase
(integrated over a closed volume), consistent with the Second Law of Thermodynamics.

5. The Chapman-Enskog procedure requires the Knudsen number

Kn =
λ

L
≪ 1,

where λ is the mean free path of particles in the fluid, and L is the characteristic macroscopic length scale over which
fluid properties vary significantly. In astrophysics, “fluids” are often extremely rarefied, and this assumption must be
checked.

Consider two astrophysical systems:

(a) The Solar Corona: n ≈ 109 cm−3, T ≈ 106 K, length scale L ≈ R⊙ ≈ 7× 1010 cm.

(b) The core of the Intra-Cluster Medium (ICM) of a Galaxy Cluster: n ≈ 10−3 cm−3, T ≈ 108 K, length scale
L ≈ 100 kpc.
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Assume the gas is fully ionized hydrogen in both cases. The effective Coulomb collision cross-section can be approxi-
mated as (in Gaussian units):

σ ≈ πe4

(kBT )2
ln Λ,

where the Coulomb logarithm ln Λ ≈ 20.

Calculate the mean free path λ = (nσ)−1 for both systems, and compute the Knudsen number for both. Discuss if the
standard fluid approximation valid for describing global flows in these systems.

6. Start with the Eulerian equation of motion for a self-gravitating fluid:

ρ
∂vj
∂t

+ ρ
∑
k

vk
∂vj
∂xk

= −
∑
k

∂Pjk

∂xk
− ρ

∂Φ

∂xj
,

where Φ is the gravitational potential and Pjk is the pressure tensor. Multiply this equation by xi and integrate over
the entire volume V of the system (assume vacuum boundary conditions, i.e., ρ = 0 and Pjk = 0 at the surface). Hence
show that the tensor Virial Theorem holds:

1

2

d2Iij
dt2

= 2Tij +Πij +Wij

where:

• Iij =

∫
V
d3x ρxixj is the moment of inertia tensor,

• Tij =
1

2

∫
V
d3x ρvivj is the kinetic energy tensor,

• Πij =

∫
V
d3xPij is the pressure integral,

• Wij = −
∫
V
d3x ρxi

∂Φ

∂xj
is the potential energy tensor.

Recover the standard scalar Virial Theorem for a static self-gravitating system.

7. Consider two fluid elements located at x⃗ and x⃗+ δl⃗ at time t. As the fluid flows, both elements move, and the vector δl⃗
connecting them evolves.

(a) Using the definition of the material (Lagrangian) derivative d/dt, show that the rate of change of this line element
is given by:

d

dt
(δl⃗) = (δl⃗ · ∇⃗)v⃗.

(b) Write the above equation in the component form

d

dt
(δli) =

∑
j

Hijδlj ,

where Hij is the velocity gradient tensor that completely determines how a fluid element changes its shape and
volume. Show that Hij can be decomposed into three physically distinct parts:

Hij =
1

3
θδij + σij + ωij ,

where
θ = ∇⃗ · v⃗

is the expansion scalar,

σij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
− 1

3
θδij
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is the shear tensor (trace-free symmetric) and

ωij =
1

2

(
∂vi
∂xj

− ∂vj
∂xi

)
is the vorticity tensor (antisymmetric).

(c) Consider a small fluid element that is spherical at time t = 0. Describe how the element looks at t+ δt due to the
action of only one of these terms at a time. What does θ do to the sphere? What does σij do to the sphere? What
does ωij do to the sphere?

(d) Taking the divergence of the Euler equation for a self-gravitating fluid:

∂v⃗

∂t
+ (v⃗ · ∇⃗)v⃗ = −1

ρ
∇⃗P − ∇⃗Φ,

and using the decomposition of Hij , derive the evolution equation for the expansion scalar θ (known as the
Newtonian analogue of Raychaudhuri equation used in General Relativity):

dθ

dt
= −1

3
θ2 − 2σ2 + 2ω2 − 4πGρ+ pressure terms

where 2σ2 ≡ σijσji and 2ω2 ≡ ωijωji.

(e) Based on the equation derived for θ, discuss the role of shear (σ) and vorticity (ω) in the context of gravitational
collapse. Does shear assist or resist the collapse of a gas cloud? Does rotation (vorticity) assist or resist collapse?

8. Consider a hydrostatic fluid in a constant external gravitational field with acceleration −g ẑ.

(a) Suppose an object is immersed in the fluid. Show that the net force exerted on the object by the surrounding fluid
is M ′g ẑ, where M ′ is the mass of fluid displaced by the object.

(b) Suppose the fluid, in addition to be hydrostatic, is also an incompressible liquid (e.g., water). Find the pressure
P (z) of the liquid.

9. Consider a hydrostatic spherical distribution of matter (e.g., a star, or a galaxy, or a cluster) having a gravitational
potential

Ψ(r) = − GM⋆√
r2 + b2

,

where M⋆ and b are constants.

(a) Find the density ρ(r) for the system.

(b) What is the mass M(r) contained within a radius r? Find the total mass of the system.

(c) Calculate the pressure P (r) of the object. Show that it can be written as P ∝ ργ . What is the value of γ?

10. The Lane-Emden equation for polytropic stars is given by

1

ξ2
d

dξ

(
ξ2

dθ

dξ

)
= −θn

Consider the case of a polytrope with index n = 1.

(a) By making the substitution χ(ξ) = ξθ(ξ), show that the Lane-Emden equation reduces to the simple harmonic
oscillator equation:

d2χ

dξ2
+ χ = 0.

(b) Apply the boundary conditions at the centre, θ(0) = 1 and θ′(0) = 0, to derive the analytic solution:

θ(ξ) =
sin ξ

ξ
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(c) Determine the location of the stellar surface ξ1. Does a star with n = 1 have a finite radius?

11. It is known that a static solar corona dominated by thermal conduction cannot be confined because P∞ > PISM. Let us
repeat this analysis for an adiabatic corona, where thermal conduction is negligible.

(a) Assume the corona is an ideal gas obeying the adiabatic relation P = Kργ (with γ = 5/3). Combining this with
the equation of hydrostatic equilibrium:

dP

dr
= −ρ

GM⊙
r2

show that the temperature varies with radius as:

T (r) = T0 −
γ − 1

γ

µmp

kB
GM⊙

(
1

R⊙
− 1

r

)
assuming T (R⊙) = T0. Here µ is the mean molecular weight.

(b) Show that for an adiabatic corona, the temperature reaches zero at a finite radius Rmax.

(c) Calculate this height Rmax (in units of solar radii R⊙) for T0 = 2 × 106 K. Take µ = 0.6 for fully ionized solar
plasma.

(d) Unlike the conductive case, an adiabatic atmosphere can be static and confined (since P → 0 at finite r). Why,
then, do we still believe the solar wind exists?
Hint: Consider the stability of such a steep temperature gradient against convection or conduction.
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