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Effect of peculiar velocities
▶ Until now, we have ignored the effect of peculiar velocities on the cosmological observables.
▶ A very prominent effect of the peculiar motion of the Earth is the dipole anisotropy of the CMB.

Planck data

▶ While doing cosmology with CMB, one subtracts out the dipole first.
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Observed redshifts
▶ The presence of peculiar velocities affect the redshift of an object and hence the determination of distances

using the standard Hubble-Lemaitre law.
▶ The observed redshift zobs of an object (as determined, e.g., from wavelengths of spectral lines) consists of a

cosmological component zcos and a component zp arising from the radial component of the peculiar velocity vr.
▶ The relation between comoving distance and the cosmological redshift zcos is

χ(zcos) =
∫ zcos

0

c dz
H(z)

,

and the redshift arising from the peculiar velocity vr is

zp =

√
1 + vr/c
1− vr/c

− 1.

The total redshift is
1 + zobs = (1 + zcos)(1 + zp)

▶ In case of non-relativistic velocities and small redshifts, the relation simplifies to

zobs ≈
H0r
c

+
vr
c
.

Note that this is valid only in the nearby universe and has to be modified for high redshifts.
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Density field from peculiar velocities

▶ To estimate the peculiar velocity vr, one needs the redshift zobs and an independent estimate of the distance r.
▶ For nearby galaxies, we can use the Tully-Fisher relation for spiral galaxies L ∝ V3

max, where Vmax is the maximum
rotation velocity. One can also use the diameter - velocity dispersion Dn ∝ σ1.2 for ellipticals, where Dn is the
diameter at which the mean surface brightness drops to some fiducial value.

▶ One thus has the redshift zobs and r from observations, allowing to estimate vr.
▶ In the linear regime, the peculiar velocity field is related to the density field through the continuity equation

δ̇(⃗x, t) = Ḋ δ(⃗x, t0) = −1

a
∇⃗ · v⃗(⃗x, t) =⇒ ∇⃗ · v⃗(⃗x, t) = −a

Ḋ
D

δ(⃗x, t) = −a H(a) f(a) δ(⃗x, t).

Thus the knowledge of the velocity field can be used to estimate the density field.
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Cosmology using large-scale velocity field
▶ To calculate the non-radial components of v⃗, note that in the linear (and quasi-linear) regime we can write

v⃗ = ∇⃗V (the rotational component decaying rapidly). Then vr = ∂V/∂r, thus giving

V(⃗r) =
∫ r

0

dr′ vr(r
′, θ, ϕ).

One can thus obtain V and correspondingly the velocity field v⃗.
▶ The density contrast is then

δ(⃗x) = − ∇⃗ · v⃗(⃗x)
a H(a) f(a)

.

▶ Once can thus estimate the density field, and then compare with, e.g., the density field δgal of the observed galaxies.
▶ Usually at large scales δgal = bgal δ, where bgal is the galaxy bias. Hence

δgal = −∇⃗ · v⃗ bgal
H a f(a)

,

which can be used to constrain

β =
f(a)
bgal

≈ Ω0.6
m (a)
bgal

.

This can be used to put constraints on cosmology as well as galaxy formation.
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Redshift distance

▶ The measurement of distances using Tully-Fisher or similar relations become impossible at high redshifts. For these
high redshift galaxies, we only have information about the total redshift zobs. This can affect our inference on the
distances and hence the measurement of correlation function.

▶ We can assign a distance to the galaxy using the Hubble-Lemaitre law (assuming it to be nearby)

s =
c
H0

zobs.

▶ Since czobs ≈ H0r+ vr we get
s = r+

vr
H0

.

▶ In vector notation, we write

s⃗ = r⃗+
v⃗ · r̂
H0

r̂.

▶ The quantity s is called the redshift distance, while r is the “real distance”.
▶ Clearly s < r when vr < 0. The object will seem nearer in the redshift space when it is moving towards us compared

to the Hubble expansion.
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Redshift space distortion

sky plane

re
ds
hi
ft

real space redshift space

▶ Let us now understand physically the effect of redshift space using evolution of
a spherical shell.

▶ For a large radius within which the overdensity is small, the expansion of the
mass shell is decelerated but its peculiar velocity is still too small to compensate
for the Hubble expansion. In redshift space the mass shell will then appear
squashed along the line-of-sight when observed from a distance much larger
than its size.

▶ A mass shell with linear overdensity δ ∼ 1 is just turning around at the time it
is observed, so its peculiar infall velocity is exactly equal to the Hubble
expansion velocity across its radius. In redshift space this shell appears
completely “collapsed” to an observer at large distance.

▶ A mass shell which has already turned around has a peculiar infall velocity
which exceeds the Hubble expansion across its radius. If this infall velocity is
less than twice the Hubble expansion velocity, the shell appears flattened along
the line-of-sight, but with the nearer side having larger redshift distance than
the farther side.

▶ At smaller radii the peculiar infall velocities of collapsing shells are much larger
than the relevant Hubble velocites and are randomised by scattering effects.
The structure then appears to be elongated along the line-of-sight in redshift
space (a “finger-of-God” pointing back to the observer).
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Density contrast in redshift space
▶ It is usually the case that the scale of perturbations is much smaller than the distance from us.
▶ In that case one can use the plane parallel approximation and construct a local Cartesian coordinate system. We

choose the z-direction along the line of sight, hence

s⃗ = r⃗+
vz
H0

ẑ.

▶ Using the conservation of mass (or equivalently the conservation of galaxy counts), we can write

ρ
(s)
gal (⃗s) d

3s = ρgal(⃗r) d
3r =⇒ [1 + δ

(s)
gal (⃗s)] d

3s = [1 + δgal(⃗r)] d
3r.

▶ Since the coordinate transformation involves only the z-component, the Jacobian is simply∣∣∣∣∂sa∂rb

∣∣∣∣ = 1 +
1

H0

∂vz
∂rz

.

▶ Hence

1 + δ
(s)
gal (⃗s) =

(
1 +

1

H0

∂vz
∂rz

)−1

[1 + δgal(⃗r)].

▶ In the linear approximation δgal ≪ 1, vz ≪ c, then

1 + δ
(s)
gal (⃗s) ≈ 1− 1

H0

∂vz
∂rz

+ δgal(⃗r) =⇒ δ
(s)
gal (⃗s) ≈ δgal(⃗r)−

1

H0

∂vz
∂rz

.
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Kaiser effect
▶ In the Fourier space

δ
(s)
gal (⃗k) ≈ δgal(⃗k)−

ikz
H0

vz(⃗k)

= δgal(⃗k)−
ikz
H0

H a f(a)
ikz
k2

δ(⃗k) ≈ δgal(⃗k)−
ikz
H0

H0 f(a)
ikz
k2

δgal(⃗k)
bgal

= δgal(⃗k)
[
1 +

k2z
k2

f(a)
bgal

]
= δgal(⃗k)

(
1 + β

k2z
k2

)
.

▶ One can define µk ≡
kz
k
, such that θ = cos−1 µk is the angle between k⃗ and the line of sight. In that case

δ
(s)
gal (⃗k) = δgal(⃗k)

(
1 + βµ2

k

)
.

This relates the density contrasts in the real and redshift spaces.
▶ The power spectra are related by

P(s)gal (⃗k) = Pgal(k)
(
1 + βµ2

k

)2
,

showing that the effect of redshift space is to make the power spectrum anisotropic. This effect at large scales is
known as the Kaiser effect.

▶ In general the function P(s)gal (⃗k) ≡ P(s)gal (k, µk) can be expanded in terms of Legendre polynomials. The corresponding
coefficients can be measured from observations, which in turn can be used to estimate β.
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Observing the Kaiser effect

P(k) −→ P(k∥, k⊥), k =
√

k2∥ + k2⊥.Tirthankar Roy Choudhury 9



Spherically averaged power spectrum
▶ A quantity of interest is the “spherically averaged power spectrum” defined as

P(s)gal,0(k) ≡
1

2

∫ 1

−1

dµk P
(s)
gal (⃗k),

which is nothing but the power spectrum in the redshift space integrated over all possible angles.
▶ This is shown to be

P(s)gal,0(k) = Pgal(k)×
1

2

∫ 1

−1

dµk
(
1 + βµ2

k

)2
= Pgal(k)

(
1 +

2

3
β +

1

5
β2

)
.

▶ This shows that the amplitude of fluctuations increase in the redshift space. This is expected as the peculiar velocity
tends to move the points towards high density regions in the redshift space.

real space redshift space

▶ It is possible to write down equivalent expressions for correlation functions ξ in the real and redshift spaces as well.
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Finger-of god effect
▶ At small scales, the Kaiser effect is not sufficient to capture the effects of redshift space distortions. The main

effect in these scales arise from the pairwise velocity dispersion along the line of sight in virialized objects.
▶ It turns out that the effect can be modelled as

δ
(s)
gal (⃗k) = δgal(⃗k) e

−k2µ2
k σ

2/2H2

,

where σ is the velocity dispersion.
▶ We can find the value of σ as compared to the Hubble velocity as follows:

σ2 ∼ GM
Rvir

=
G
H2

M
R3
vir

(HRvir)
2 =

1

2

8πG
3H2

3M
4πR3

vir
v2H

=
1

2

1

ρc
ρvir v

2
H =

1

2

ρ̄

ρc

ρvir
ρ̄

v2H

∼ 1

2
Ωm,0 200 v2H.

▶ This implies
σ ∼

√
Ωm,0 10 vH.

So, haloes appear ∼ 5− 10 times longer along the line of sight compared to the sky plane. This is the finger-of-God
effect discussed earlier.
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Observing the finger-of-God effect
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