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Spherical evolution

▶ For dark matter, a simple but effective approximation scheme, based on spherical symmetry, can be used for studying
the dynamics of a overdense spherical region. As the universe expands, the overdense region will expand more slowly
compared to the background, will reach a maximum radius, contract and virialize to form a bound non-linear system.

▶ Let us assume that collapsing shells within the overdense region do not cross. In that case, the mass M enclosed by
the shell will not change.

▶ The equation of motion for a particle on the shell of proper radius R in an expanding background will be

R̈ = −GM
R2

− 4πG
3

(ρ̄rest + 3P̄rest)R,

where we include other components of energy density ρ̄rest + 3P̄rest, if present, through their gravitational
acceleration.

▶ For a universe with dark matter and a cosmological constant, we have ρ̄rest = −P̄rest = ΩΛ(3H2
0/8πG), then

R̈ = −GM
R2

+ H2
0ΩΛR.

▶ Clearly, the effect of Λ becomes important only for large R, corresponding to densities ∼ ρc,0. For the most part, we
will be studying high-density collapsed structures, so we will ignore the effect of Λ.
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Initial conditions
▶ The second order equation can be solved for a given background cosmology and a mass scale M, provided the

initial conditions are known.
▶ The initial velocity is obtained by assuming that at very early epochs (a = ai ∼ 10−3) the shell was expanding very

nearly with the background universe – hence its initial velocity can be approximated by the Hubble expansion
velocity at that epoch Ṙi ≈ H(ai)Ri.

▶ The initial value of R is still arbitrary – however, it should be chosen such that the initial density contrast is much less
than unity (so that the linear approximation is valid).

▶ Recall that the density contrast is given by

δ(t) =
2GM

Ωm,0H2
0

a3(t)
R3(t)

− 1.

We need 0 < δ(ti) ≪ 1.
▶ Keep in mind that the background solution for a matter-dominated universe is simply

a(t) =
(
3H0t
2

)2/3

,
ȧ
a
=

2

3t
.

Then the density contrast evolves as

δ(t) =
9GM
2

t2

R3
− 1.
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The first integral
▶ The equation of motion has a first integral

1

2
Ṙ2 − GM

R
= E,

where E is a constant. The solution will be bound only when E < 0.
▶ This can be compared with the Friedmann equations which govern the evolution of the background universe:

ä
a
= −H2

0

2

Ωm,0

a3
,

ȧ2

a2
+

k
a2

= H2
0
Ωm,0

a3
,

which can also be written as

ä = −H2
0Ωm,0

2a2
,

1

2
ȧ2 − H2

0Ωm,0

2a
= − k

2
.

Thus, the spherical collapse problem is exactly like cosmology in a spatially curved (closed) universe.
▶ We already know that the solution will be of the form of a cycloid.
▶ The energy E, which is conserved during the motion, can be related to the initial conditions at a very early epoch ai.

We assume that δi ≪ 1 and Ṙi ≈ HiRi (the shell is expanding with the Hubble flow). Then

E =
1

2
Ṙ2
i −

GM

Ri
≈

1

2
H2
i R

2
i −

GM

Ri

= −
GM

Ri

(
1 −

H2
i R

3
i

2GM

)
= −

GM

Ri

(
1 −

H2
0Ωm,0R

3
i

2GMa3i

)
= −

GM

Ri

(
1 −

1

1 + δi

)
,

E ≈ −GM
Ri

δi.
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Turnaround

▶ Let us first calculate the maximum (turnaround) radius which corresponds to Ṙ = 0

Rta = −GM
E

.

Clearly, the turnaround radius is physical only when E < 0. If E > 0, the condition Ṙ = 0 will never be satisfied.
▶ We already have E ≈ −GM/Ri × δi. Thus, E < 0 when δi > 0, i.e., regions which are initially overdense will

eventually turnaround and collapse.
▶ So the turnaround radius is related to the initial radius by simply:

Rta =
Ri

δi
.
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Solutions to the evolution equation
▶ The solutions of the equations of motion are simply given by the parametric form

R = A(1− cos θ), t = B(θ − sin θ), A =
GM
2|E| , B =

GM
(2|E|)3/2

, A3 = GMB2.

▶ The evolution of the density contrast is then

δ =
9GM
2

B2(θ − sin θ)2

A3(1− cos θ)3 − 1 =
9(θ − sin θ)2

2(1− cos θ)3 − 1,

which shows that δ(θ) is independent of M.
▶ Now let us check whether everything makes sense for early times t → 0. This corresponds to θ → 0.
▶ It is easy to show that R ∝ t2/3 at early times, showing that the radius of the region is expanding with the Hubble

flow.
▶ It can also be shown that at t → 0, the density contrast evolves as

lim
t→0

δ(t) ≈ 3

20

(
6t
B

)2/3

≡ δL(t).

This is also expected since a ∝ t2/3 and δ ∝ a in linear theory. We have denoted the linear evolution of the density
contrast as δL(t).
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Turnaround overdensity

▶ For turnaround, we have θ = π where R is maximum, so that

Rta = 2A =
GM
|E| , tta = πB =

πGM
(2|E|)3/2

,

which is same as what we got earlier.
▶ Also,

δta =
9π2

16
− 1 ≈ 4.55,

and
δL,ta =

3

20
(6π)2/3 ≈ 1.06.

▶ Thus, the turnaround occurs when the linear density contrast is 1.06, by that time the actual density contrast is as
high as 4.55.
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Collapse of the sphere

▶ After turnaround, the shell collapses with its density increasing rapidly. The solution gives that the region will simply
collapse to a point (R → 0 corresponding to θ → 2π) at an epoch tvir.

▶ However, one should realize that the simple idealized model breaks down at such high densities because small
non-radial motions get amplified and shells start crossing each other.

▶ The system relaxes violently and forms a virialized bound structure. The formalism mentioned here is not adequate
to describe evolution during the period when the system relaxes (t ∼ tvir).

▶ After virialization, the system attains a steady state. In that case we can use the virial theorem to relate the kinetic
and potential energy.

▶ We can write K = −U/2 and hence E = K+ U = U/2.
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Properties of the virialized object

▶ One can determine the properties of the system when it has already virialized assuming that the system virializes at
θ = 2π

tvir = 2πB =
πGM√
2|E|3/2

=⇒ δL,vir =
3

20
(12π)2/3 ≈ 1.686.

▶ The value of the linear density contrast when the sphere virializes is called the critical density of collapse and is
written as δc.

▶ For a matter-dominated universe, we have computed its value. For a ΛCDM model, the value differs from 1.686 but
can be calculated numerically.

▶ To compute the radius, we use

E =
U
2

= − GM
2Rvir

=⇒ Rvir = A =
GM
2|E| =

Rta

2
.

▶ Then the actual overdensity of the system is

∆vir ≡ 1 + δvir =
9GM
2

t2vir
R3
vir

=
9GM
2

4π2B2

A3
= 18π2 ≈ 177.65.

▶ Interestingly,∆vir is independent of the properties of the system.
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Relaxation time-scale

▶ One may think that the epoch virialization should not be that corresponding to the collapse, but the one when the
radius is Rta/2 qhich implies θ = 3π/2. This corresponds to a time B(3π/2 + 1) which is ∼ B(π/2− 1) smaller than
the time of collapse.

▶ However, the system takes some time to relax after θ = 3π/2, the time scale being given by the free fall time scale

tff ∼
1√
Gρ

∼
√

R3
vir

GM
=

√
A3

GM
= B

which is similar to the time difference. Thus it is assumed that the collapse happens close to the collapse time θ = 2π.
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Plot of the solution
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Scalings and other relations

▶ Since the density at collapse is a constant, we can obtain a relation between the mass and the virial radius

M
1011h−1M⊙

=

(
Rvir

117h−1kpc

)3
Ωm,0

0.3

∆vir

18π2
(1 + zvir)

3 .

▶ In practice, one is often interested in the circular velocity vc of the collapsed halo. Since K = −U/2 at virialization, we
get

v2c =
GM
Rvir

,

where we have assumed that the virialized halo has a singular isothermal density profile ρ(r) ∝ r−2.
▶ One can see that M ∝ R3

vir and v2c ∝ M/Rvir ∝ M2/3.
▶ The above relations can be used to relate the circular velocity to the mass of the halo

M
1011 h−1M⊙

=

(
vc

60.49 km s−1

)3 (
0.3

Ωm,0

)1/2 (
18π2

∆vir

)1/2

(1 + zvir)
−3/2

▶ For other cosmologies, the relations are modified slightly. The problem has to be solved numerically – the qualitative
features, however, remain the same.
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Baryons and shock heating

▶ Although the evolution of baryons were not included in the solutions, one can infer their behaviour in a qualitative
manner.

▶ The gas will essentially follow the gravitational attraction of the dark matter and will settle in the collapsed halo.
▶ The gas, when attracted into the dark matter potential well, acquires kinetic energy and thus gets heated up. The

typical temperature of the gas (assuming it to be hydrogen) would be

Tvir ∼
GMmp

kBRvir
.

Clearly Tvir ∝ M2/3.
▶ This temperature is ∼ 4.5× 105 K for 1011h−1M⊙ dark matter haloes, and is smaller for lighter haloes.
▶ The gas, thus shock heated, cannot condense unless some cooling mechanism takes over. This forms the basis of

galaxy formation studies.
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