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Matter perturbations

▶ The perturbations of non-relativistic matter (dark matter and baryons) play the most important role in structure
formation. These perturbations originate during the inflation, evolve during the radiation and matter dominated
epochs and then finally through the cosmological constant dominated accelerating universe. We will ignore the
accelerating universe for the time being.

▶ Let us first work out the evolution in the matter dominated regime. In this regime, we will ignore the radiation.
▶ Using P̄m = 0, it is easy to show that a ∝ η2. This can be shown if one remembers that a ∝ t2/3.
▶ We will assume that the perturbed pressure pm = 0. This is a good approximation for dark matter which remain

collisionless even at small scales.
▶ We can then show that the solutions to the α

α component is

ϕ = C1 +
C2

η5
,

implying that the potential, at best, can remain constant. The decaying mode dies rapidly with time.
▶ Note that ϕ remains a constant at all scales, as long as the expansion is driven by matter.
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Evolution at large and small scales

▶ Now, let us use the Poisson equation (
k2 +

12

η2

)
ϕ = −4πGa2ρ̄mδm ∝ −δm

a
.

▶ For large scales, we ignore the k2 term and get

ϕ

η2
∝ −δm

a
=⇒ δm ∝ −ϕ,

which implies that δm does not evolve at large scales (scales larger than the Hubble radius).
▶ For small scales, we have

k2ϕ ∝ −δm
a

=⇒ δm ∝ −ak2ϕ,

which implies that the perturbations grow as δm ∝ a.
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Newtonian limit
▶ Before proceeding further, let us work out the equations at small scales |kα|η → ∞:

δ′m = γαβkαkβVm, V′
m = −4

a′

a
Vm − ρ̄′

ρ̄
Vm − pm

ρ̄m
− ϕ.

▶ Now for non-relativistic matter, we have ρ̄′m/ρm = −3a′/a. Also, let us transform to the usual time coordinate
dt = dη a(η). Then δ′ = ∂δ/∂η = a∂δ/∂t = a δ̇ and hence

a δ̇m = γαβkαkβVm, aV̇m = −ȧVm − pm
ρ̄m

− ϕ.

▶ Now write in terms of the vector v⃗m

δ̇m = −1

a
ikαvm,α, v̇m,α = − ȧ

a
vm,α − 1

a
ikαpm
ρ̄m

− 1

a
ikαϕ,

▶ If we transform back to real space ikα → ∂/∂xα, we get

δ̇m +
1

a
∇⃗ · v⃗m = 0, ˙⃗vm +

ȧ
a
v⃗m = −1

a
∇⃗pm
ρ̄m

− 1

a
∇⃗ψ.

These are the evolution of perturbations on small scales, which can also be derived from the equations of fluid
dynamics.

▶ In this small-scale limit, the 0
0 component of the Einstein equation becomes the Poisson equation

−kαkαϕ = 4πGa2ρ̄mδm =⇒ ∇⃗2ϕ = 4πGa2ρ̄mδm.
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Matter perturbations in radiation dominated era
▶ Next, let us discuss the evolution of δm in the radiation dominated era.
▶ It turns out that at large scales kη → 0, the potential ϕ does not evolve even in the radiation dominated era. The dark

matter density perturbations also do not evolve outside the Hubble radius.
▶ At small scales, we can take the conservation equations for δm and vm,α and put P̄m = pm = 0:

δ′m = −γαβ ikβvm,α + 3ϕ′,

v′m,α = −4
a′

a
vm,α − ρ̄′m

ρ̄m
vm,α − ikαϕ = −a′

a
vm,α − ikαϕ,

where we have used the fact that ρ̄′m/ρ̄m = −3a′/a.
▶ We now differentiate the first equation and use the second to get a equation for δ:

δ′′m +
a′

a
δ′m = 3ϕ′′ + 3

a′

a
ϕ′ − k2ϕ.

▶ For the radiation dominated era, a′/a = 1/η.
▶ It turns out that for small scales in the radiation dominated era, the growing solution is given by the homogeneous

part
δm = C1(⃗k) + C2(⃗k) ln η.

Thus, at best, the perturbations can grow logarithmically, which is very slow.
▶ Hence, to summarize, in the radiation dominated era δm does not grow in any scale (ignoring the slow logarithmic

growth at small scales). In the matter dominated era, δm can grow only at scales smaller than the Hubble radius.
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Evolution summary

radiation-dominated matter-dominated

large scales ϕ constant, ϕ constant,

(kη ≪ 1) δm constant δm constant

small scales ϕ oscillates, decreases, ϕ constant,

(kη ≫ 1) δm ∝ ln η (almost constant) δm ∝ a
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Transfer function
▶ Let us assume that the fluctuations originate during the inflationary epoch. We shall take the end of

inflation aend to be our a = 0.
▶ The evolution of the potential to the present epoch can be characterised by the transfer function

ϕ(η0, k) = ϕ(a = 1, k) ≡ ϕ(a = 0, k)T1(k),

where ϕ(k, a = 0) is the primordial potential.
▶ The transfer function is normalized such that it is unity at very large scales (k → 0)

T(k) ≡ T1(k)
T1(0)

=⇒ T(k) =
ϕ(a = 1, k)
ϕ(a = 0, k)

× ϕ(a = 0, 0)

ϕ(a = 1, 0)
.

▶ The non-trivial form of T(k) will arise because ϕ evolves differently in the radiation-dominated and
matter-dominated era.

▶ So we have

ϕ(a = 1, k) = ϕ(a = 0, k)T(k)
[
ϕ(a = 1, 0)

ϕ(a = 0, 0)

]
.

▶ We can write the power spectrum for potential as (ignoring a volume normalization factor)

Pϕ(a, k) = |ϕ(a, k)|2 .
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Matter power spectrum
▶ For scales ≪ H−1, the matter density contrast is related to the potential through the usual Poisson equation

δm = − k2ϕ
4πGa2ρ̄

= − k2ϕa
4πGρ̄0

= − 2k2ϕa
3H2

0Ωm,0
,

▶ At the present epoch, for scales ≪ H−1
0 ≈ 3000h−1 Mpc, we have

δm(a = 1, k) = −2k2ϕ(a = 1, k)
3H2

0Ωm,0
= − 2

3H2
0Ωm,0

k2ϕ(a = 0, k)T(k)
[
ϕ(a = 1, 0)

ϕ(a = 0, 0)

]
.

▶ The density power spectrum of matter fluctuations is defined as (apart from a volume normalization)

Pm(a, k) = |δm(a, k)|2 .
▶ The density power spectrum at small scales at the present epoch is related to the primordial potential power

spectrum as (retaining only the k-dependent part) Pm(a = 1, k) ∝ k4Pϕ(a = 0, k)T2(k).
▶ Usually, Pϕ(a = 0, k) is assumed (or often predicted by inflationary models) to be of the scale-free power-law form

k3Pϕ(a = 0, k) ∝ kn−1.

For scale-invariant spectrum, we have n = 1.
▶ The linearly extrapolated density power spectrum at the present epoch is then

Pm(a = 1, k) = As k
n T2(k).

The normalization As is fixed by comparing with observations.
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Initial conditions

▶ Once inflation ends, all the length of interest are larger than the Hubble radius H−1(a).
▶ Inflationary models would predict the value of ϕ(aend, k) ≡ ϕ(0, k). The corresponding power spectrum is the

primordial power spectrum.
▶ For a mode larger than the Hubble radius, the potential does not grow. Let across denote the time when a mode enters

the Hubble radius (across is hence a function of k).
▶ Then we can write

ϕ(across, k) = ϕ(0, k).

▶ For scales larger than Hubble radius, the density contrast too does not grow and is given by δm ∝ −ϕ, which we
write as δm = −Cϕ, where C is a constant (which can be shown to be 2, but not important for this analysis).

▶ Thus we can write
δm(across, k) = −Cϕ(0, k).
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Crossing the Hubble radius

length scale

aaeqaend

H−1(a) ∝ a2

H−1(a) ∝ a3/2

klarge

ksmall

across(klarge) across(ksmall)
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Dependence of crossing time on scales
▶ Next let us estimate the dependence of scales k−1 on their time across of crossing the Hubble radius H−1(a).
▶ The proper scale evolves as a/k. The Hubble radius H−1(a) ∝ a3/2 in the matter-dominated epoch and H−1(a) ∝ a2

in the radiation-dominated epoch.
▶ Suppose there are two scales k1 and k2 which enter the Hubble radius in the radiation dominated epoch. Then their

crossing times will be related by
across(k1)
across(k2)

=
k2
k1

(RD).

▶ For similar two scales in the matter dominated epoch, the relation is

across(k1)
across(k2)

=
k22
k21

(MD).

▶ If keq denotes the scale which crosses the Hubble radius at a = aeq, then scales k ≫ keq cross during the
radiation-dominated epoch and have across ≪ aeq.

▶ Similarly, scales k ≪ keq cross during the matter-dominated epoch and have across ≫ aeq.
▶ Hence, we can write (approximately)

k
keq

=

(
aeq
across

)1/2

for across ≫ aeq (MD),

k
keq

=

(
aeq
across

)
for across ≪ aeq (RD).
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Density evolution for different scales
▶ Now, consider the density contrasts which cross the Hubble radius during the radiation-dominated epoch,

i.e., those corresponding to scales k ≫ keq. Till a = aeq these modes grow only logarithmically (which we will ignore
here). So δm(aeq, k) ≈ δm(across, k).

▶ Once they enter the matter dominated epoch, they grow ∝ a. Hence

δm(a, k) = δm(aeq, k)
(

a
aeq

)
= δm(across, k)

(
a
aeq

)
for k ≫ keq (i.e., across ≪ aeq).

▶ Modes which cross during the matter-dominated epoch, on the other hand, follow the relation

δm(a, k) = δm(across, k)
(

a
across

)
for k ≪ keq (i.e., across ≫ aeq).

▶ For across ≫ aeq (modes crossing in matter-dominated), we write a/across = (a/aeq)× (aeq/across) = (k2/k2eq)(a/aeq), so

δm(a, k) = δ(across, k)
(

k
keq

)2 ( a
aeq

)
for k ≪ keq (i.e., across ≫ aeq).

▶ We can now relate the density contrast to the primordial power spectrum as

δm(a, k) = −Cϕ(0, k)
(

a
aeq

)
for k ≫ keq,

δm(a, k) = −Cϕ(0, k)
(

k
keq

)2 ( a
aeq

)
for k ≪ keq.
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Simple estimates for T(k)
▶ We have seen that (for scales smaller than the Hubble radius at the present epoch)

δm(a = 1, k) ∝ k2ϕ(a = 0, k)T(k).

▶ Hence, we have

T(k) ∝ k−2a−1
eq ∝

k2eq
k2

for k ≫ keq,

T(k) ∝ const = 1 for k ≪ keq.

This implies that the transfer function has a “feature” around k = keq.
▶ If the primordial power spectrum is of a power-law form, then

Pm(a = 1, k) ∝ kn−4 for k ≫ keq,

Pm(a = 1, k) ∝ kn for k ≪ keq.

For n ≈ 1, we have Pm(a = 1, k) ∝ k−3 at small scales and ∝ k at large scales. The turnover happens around k = keq.
▶ The value of keq is determined by the condition

aeq
keq

=
1

H(aeq)
=⇒ keq ≈ 0.07 Ωm,0h

2Mpc−1.

Observations of this turnover then can put constraints on the value of Ωm,0h2.
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Numerical results
▶ There are fitting functions available for T(k). The most used ones are by Eisenstein & Hu and BBKS.
▶ Also, codes like CAMB & CLASS calculate T(k) by solving the full set of equations and provide T(k) as a table.
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T
(k

)

Eisenstein & Hu

∝ (k/keq)2

∝ (k/keq)2 ln(k/keq)
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The matter power spectrum

Courtesy ESA and Planck Collaboration

Pm(k) contains information

on the primordial fluc-

tuations and subsequent

evolution

small scaleslarge scales
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