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Perturbations

▶ Till now, we have treated the universe to be perfectly homogeneous / smooth which is a good assumption when
averaged over large scales.

▶ However, to explain the structures around us (galaxies, clusters etc), we need to introduce inhomogeneities as
perturbations on top of the smooth background.

▶ The basic idea is to use a metric gij = ḡij + δgij (which will lead to a Einstein tensor Gij = Ḡij + δGij) and a source
tensor Tij = T̄ij + δTij. The unperturbed part Ḡij = 8πG T̄ij would lead to the Friedmann equations for the smooth
universe.

▶ The perturbed part δGij = 8πG δTij can used for studying the evolution of the perturbations.
▶ If the amplitude of these perturbations is small, we can use linear perturbation theory and work out the mathematics

relatively easily.
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The perturbed metric
▶ The background metric is given by (assuming spatially flat)

ds2 = dt2 − a2(t)γαβ dxα dxβ , γαβ dxα dxβ = dr2 + r2dΩ2.

In terms of Cartesian coordinates, γαβ = δαβ .
▶ Recall: xα is the comoving coordinate of a cosmological observer, while the proper coordinate would be a(t)xα.
▶ It is more convenient to use the conformal time coordinate dη = dt/a(t), in terms of which the metric becomes

ds2 = a2(η)
(
dη2 − γαβ dxα dxβ

)
.

▶ Note that the Hubble parameter is given by H(η) = ȧ/a = a′/a2.
▶ Now, when the universe is perturbed, the metric takes the form

ds2 = (ḡij + δgij) dx
idxj = a2(η)

[
(1 + 2ψ) dη2 − 2wα dη dxα − (γαβ + hαβ) dx

α dxβ
]
.

▶ Note that δgij has ten independent components, which have been written as a scalar ψ(η, x⃗), a three-vector wα(η, x⃗)
and a symmetric second-rank tensor hαβ(η, x⃗). These characterizations are with respect to rotations in the
three-space.

▶ We will assume that the perturbations are small, i.e., ψ ≪ 1, |wα| ≪ 1, |hαβ | ≪ |γαβ |. These perturbations must
vanish when averaged over large scales.
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Decomposition of the perturbations
▶ One can decompose a three-vector into a divergence-free and a curl-free component:

w⃗ = w⃗⊥ + w⃗∥, ∇⃗ · w⃗⊥ = ∇⃗ × w⃗∥ = 0 =⇒ w⃗ = w⃗⊥ + ∇⃗W, ∇⃗ · w⃗⊥ = 0.

▶ The corresponding decomposition could also be written as

wα = w⊥
α +

∂W
∂xα

, γαβ ∂w
⊥
α

∂xβ
= 0.

Thus the three components of the vector wα can be represented by a divergence-free vector w⊥
α having two

independent components and a scalarW.
▶ Similarly, we can expect that a tensor hαβ too can be decomposed too into tensor(s), vector(s) and scalar(s), with the

tensor and vector being divergence-free.
▶ First, let us denote the trace of hαβ by −6ϕ. Then, we can define a traceless tensor as

sαβ =
1

2
(hαβ + 2ϕγαβ) , γαβsαβ = 0.

▶ One can further decompose the traceless sαβ into a scalar, a vector and a tensor as follows:

sαβ =

(
∂2S

∂xα∂xβ
− 1

3
γαβγ

µν ∂2S
∂xµ∂xν

)
+

(
∂s⊥α
∂xβ

+
∂s⊥β
∂xα

)
+ sTαβ , γ

αβ ∂s
⊥
α

∂xβ
= γµβ ∂s

T
αβ

dxµ
= 0, γαβsTαβ = 0.

▶ So, the perturbations are

(ϕ, ψ,W, S) −→ 4 scalars, (w⊥
α , s

⊥
α ) −→ 2 vectors, 2× 2 ind. comp., (sTαβ) → 1 tensor, 2 ind. comp.
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Perturbed stress energy tensor
▶ The tensor for a perfect fluid is given by

Tik = (ρ+ P) uiuk − P δik,

where ui is the four velocity with uiui = 1.
▶ In the fluid rest frame u0 = 1, uα = 0, hence the unperturbed tensor will be given by

T̄00 = ρ̄, T̄0α = 0 = T̄α0, T̄
α
β = −P̄ δαβ ,

where ρ̄ and P̄ represent the unperturbed quantities.
▶ In the perturbed metric, the velocity uk can be calculated by using uiui = 1 and the components are given by

u0 =
1

a
(1− ψ), u0 = a(1 + ψ), uα =

1

a
vα, uα = −a(vα + wα),

where v⃗ is the 3-velocity of the fluid. We have assumed |⃗v| ≪ 1.
▶ The components of Tik are then

T00 = ρ, Tα0 = (ρ+ P)vα, T0α = −(ρ+ P)(vα + wα), Tαβ = −P(δαβ +Σα
β).

▶ The off-diagonal terms of Tαβ (i.e, Σα
β) vanish for a perfect fluid. These terms represent the anisotropic stress which

arise for dissipative effects, e.g., viscosity, radiation-matter interaction, neutrinos. We shall ignore these effects for
these lectures.
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Density contrast and pressure perturbations

▶ Now, we assume that the density and pressure can be decomposed into an unperturbed part and a perturbations:

δ(η, x⃗) =
ρ(η, x⃗)− ρ̄(η)

ρ̄(η)
=
ρ(η, x⃗)
ρ̄(η)

− 1, p(η, x⃗) = P(η, x⃗)− P̄(η),

where δ is called the density contrast and p is the perturbed pressure.
▶ We will assume δ ≪ 1, p ≪ P̄ (or of the same order as δ if P̄ = 0), then the components of Tik are (to the first order

in perturbations)

T00 = ρ̄(1 + δ), Tα0 = (ρ̄+ P̄)vα, T0α = −(ρ̄+ P̄)(vα + wα), Tαβ = −(P̄+ p)δαβ .
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Decomposition theorem

▶ The next step would be to use the above definitions of gik and Tik in the Einstein equation δGik = 8πG δTik. In
addition, one can also work with the conservation equations δTik;i = 0, keeping in mind that they are already
contained in the Einstein equations and hence are not independent.

▶ It can be shown that the scalar, vector and tensor parts do not couple to each other (in the first-order perturbation
theory), but they evolve independently. This is known as the decomposition theorem.

▶ This allows us to treat them separately. We can study, e.g., scalar perturbations as if the vector and tensor
perturbations were absent. The total evolution of the full perturbation is just a linear superposition of the
independent evolution of the scalar, vector, and tensor part of the perturbation.

▶ In most cases of interest, we will consider only scalar perturbations, i.e., w⊥
α = s⊥α = sTαβ = 0.

▶ The tensor perturbations correspond to gravitational radiation which we will not study at present. In particular, the
two components of sTαβ are simply the two polarizations of the gravitational wave.

▶ The vector perturbations correspond to gravitomagnetism, which too can be ignored. These perturbations couple to
rotational velocity perturbations in the cosmic fluid. They tend to decay in an expanding universe, and are therefore
probably not important in cosmology.

▶ The scalar perturbations are sourced by density and pressure perturbations which will be of interest to us.
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Gauge transformations
▶ There is an additional complication in general relativity: the freedom in choosing the coordinate systems.
▶ For a homogeneous background, one conveniently chooses coordinates that represent the symmetry of the system

(i.e., geodesic observers expanding with the universe, called “cosmological observers”). There is no such obvious
coordinate system for analysing the perturbed universe.

▶ It is possible to choose different coordinate systems, differing by factor having amplitudes of the same order of the
perturbations, which are all equally valid.

▶ A particular choice of these coordinates is called a gauge. The transformation between different gauges is called a
gauge transformation.

▶ Now, given 10 components of the perturbation, one can make a coordinate transformation making 4 of the
components vanish (or putting 4 constraints), thus giving us only 6 independent components. Choosing the gauge is
equivalent to choosing a convenient coordinate system which makes calculations easier.

▶ A convenient gauge is the Poisson gauge, which is equivalent to constraints

W = S = s⊥α = 0.

▶ It is also possible to define gauge-invariant variables which remain unchanged under infinitesimal coordinate
transformations. For Poisson gauge, these variables turn out to be ψ, ϕ,w⊥

α .
▶ In Poisson gauge (which is also known as Newtonian gauge for scalar perturbations), the metric is given by

ds2 = a2(η)
[
(1 + 2ψ)dη2 − (1− 2ϕ)γαβdx

αdxβ
]
.

▶ The other popular gauge that is often used is the synchronous gauge where one chooses ψ = W = w⊥
α = 0.
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Fourier transforms

▶ For the first order perturbations, the dynamical equations are linear in the perturbed quantities. It is often easier to
work in the Fourier space where derivatives become simple multiplications.

▶ Assuming the spatial metric to be flat, for any quantity f(η, x⃗), we define the Fourier transform as

f(η, k⃗) =
∫

d3x f(η, x⃗) e−i⃗k·⃗x. =

∫
d3x f(η, x⃗) e−ikµxµ .

▶ The inverse relations are of the form (e.g., for one component of the velocity)

vα(η, x⃗) =
∫

d3k
(2π)3

vα(η, k⃗) e
ikµxµ .

▶ Note that
∂vα(⃗x)
∂xβ

=

∫
d3k
(2π)3

vα(⃗k, η) e
ikµxµ (ikµδ

µ
β ) =

∫
d3k
(2π)3

[
ikβvα(⃗k, η)

]
eikµxµ ,

implying that spatial derivatives ∂/∂xβ introduce factors of ikβ in Fourier space.
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Fourier space: a simple toy example

f(x) = sin x+ sin 22x =⇒ f(k) ∝ δD(k− 1) + δD(k− 22)

small scales: sin 22x (only k = 22)

large scales: sin x (only k = 1)
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Einstein equation
▶ It can be shown that the α

β ̸=α component of the Einstein equations imply (when there is no anisotropic stress)

− 1

a2
γαµ ∂

2(ϕ− ψ)

∂xµ∂xβ
= 0 (α ̸= β) =⇒ ϕ− ψ = 0.

This effectively reduces the number of perturbed quantities to one, which is the relativistic equivalent of the
gravitational potential.

▶ The 0
0 component if the Einstein equations in Fourier space gives

3
a′

a
ϕ′ +

(
k2 + 3

a′2

a2

)
ϕ = −4πGa2ρ̄δ,

where we have assumed that ψ = ϕ.
▶ This is the relativistic version of Poisson equation. In the Newtonian limit, we have the equation as

∇⃗2ϕ = 4πGa2ρ̄δ =⇒ k2ϕ = −4πGa2ρ̄δ.

▶ Alternatively, one can us the α
α component which is

ϕ′′ + 3
a′

a
ϕ′ + 2

a′′

a
ϕ− a′2

a2
ϕ = 4πGa2p.
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Conservation equations
▶ We can also use the conservation equations (keeping in mind that they are already contained in the Einstein

equation)

δ′ = −(γαβ ∂vα
∂xβ

− 3ϕ′)

(
1 +

P̄
ρ̄

)
− 3

a′

a
p− P̄δ
ρ̄

,

v′α = −4
a′

a
vα − ρ̄′ + P̄′

ρ̄+ P̄
vα − 1

ρ̄+ P̄
∂p
∂xα

− ∂ϕ

∂xα
,

▶ The first equation is the continuity equation, while the second is the Euler equation.
▶ In Fourier space

δ′ = −(γαβ ikβvα − 3ϕ′)

(
1 +

P̄
ρ̄

)
− 3

a′

a
p− P̄δ
ρ̄

,

v′α = −4
a′

a
vα − ρ̄′ + P̄′

ρ̄+ P̄
vα − 1

ρ̄+ P̄
ikαp− ikαϕ.

▶ We can write the equations explicitly in terms of only the scalars by using vα = ∂V/∂xα which in Fourier space
becomes vα = ikαV. Then

δ′ = (γαβkαkβV+ 3ϕ′)

(
1 +

P̄
ρ̄

)
− 3

a′

a
p− P̄δ
ρ̄

,

V′ = −4
a′

a
V− ρ̄′ + P̄′

ρ̄+ P̄
V− 1

ρ̄+ P̄
p− ϕ.

Tirthankar Roy Choudhury 11



Hubble radius

▶ In general, we will study the perturbations in two extreme scales with respect to the Hubble radius H−1(a) = a2/a′.
▶ If we assume

a ∝ tn =⇒ η ∝ t1−n =⇒ a ∝ ηn/(1−n) =⇒ a′ ∝ η(2n−1)/(1−n) =⇒ a′/a ∝ 1/η.

Thus H−1 ∝ aη.
▶ Recall that k is conjugate to the comoving scale x, hence we should compare it with the comoving Hubble radius

which is simply H−1/a ∝ η.
▶ Hence large scales would correspond to kη ≪ 1, and small scales kη ≫ 1.
▶ The comoving length scale corresponding to k is 2π/k and the physical scale is λ = 2πa/k. This should be compared

with the Hubble radius H−1 ∝ aη.
▶ At early times, η is small and hence most k values of interest are smaller than η−1, i.e., kη ≪ 1 =⇒ λ≫ η.
▶ As the universe expands, a physical length scale corresponding to k evolves as λ ∝ a, while H−1 ∝ aη ∝ a1/n. For

n = 1/2 (radiation dominated), we get H−1 ∝ a2, while for n = 2/3 (matter dominated), we get H−1 ∝ a3/2.
▶ Thus, with time, the length scale λ will become smaller than H−1. This is known as modes entering the Hubble radius.
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Entering the Hubble radius

length scale

aaeq

H−1(a) ∝ a2

H−1(a) ∝ a3/2
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Entering the Hubble radius: impact of inflation

length scale

aaeqaend

H−1(a) ∝ a2

H−1(a) ∝ a3/2
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