Cosmology Lecture 3

FLRW kinematics: redshift and distances

Tirthankar Roy Choudhury

National Centre for Radio Astrophysics Tata Institute of Fundamental Research

Pune

Physical and comoving distances

Since we will be talking about observations, let us write the metric putting back the quantity *c*

$$ds^{2} = c^{2}dt^{2} - R^{2}(t) \left[d\chi^{2} + S_{k}^{2}(\chi)(d\theta^{2} + \sin^{2}\theta \, d\phi^{2}) \right]$$

= $c^{2}dt^{2} - R^{2}(t) \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta \, d\phi^{2}) \right]$

• The **physical or proper distance** to a point with coordinate *r* is obtained by putting $dt = d\theta = d\phi = 0$

$$d_P = R(t)\chi = R(t)\int \frac{\mathrm{d}r}{\sqrt{1-kr^2}} = R(t)S_k^{-1}(r).$$

The comoving distance to the same point is defined as the distance if it was measured at the present epoch and is given by

$$d_C = R_0 \chi = R_0 S_k^{-1}(r).$$

Clearly, the proper distance between two fundamental observers increases $\propto R(t)$, while the comoving distance remains constant:

$$d_P = \frac{R(t)}{R_0} d_C$$

The coordinate systems

Comoving coordinates

Emission and receiving of electromagnetic wave

► The propagation of photons (radially) is governed by the equation

$$0 = \mathrm{d}s^2 = c^2 \mathrm{d}t^2 - R^2(t) \mathrm{d}\chi^2 \Longrightarrow \mathrm{d}\chi/\mathrm{d}t = -c/R(t)$$

where the negative sign implies "incoming" photons.

Consider a wavecrest which is emitted at *t* from some distant galaxy situated at coordinates χ . This signal is received by an observer on earth at the present epoch t_0 .

- The next wavecrest is emitted at $t + \delta t$ and is received at $t_0 + \delta t_0$.
- The comoving distance travelled by light between the two points is just the comoving distance to the galaxy and is given by

$$R_0\chi = R_0c \int_t^{t_0} \frac{dt'}{R(t')} = R_0c \int_{t+\delta t}^{t_0+\delta t_0} \frac{dt'}{R(t')},$$

Cosmological time dilation

► The integral can be broken into three parts using

$$\int_{t}^{t_0} = \int_{t}^{t+\delta t} + \int_{t+\delta t}^{t_0+\delta t_0} - \int_{t_0}^{t_0+\delta t_0} \Longrightarrow \int_{t}^{t+\delta t} \frac{\mathrm{d}t'}{R(t')} = \int_{t_0}^{t_0+\delta t_0} \frac{\mathrm{d}t'}{R(t')}.$$

Now, if *R* does not change over the time-scales of δt and δt_0 , we can take it out of the integral and hence

$$\frac{\delta t}{R(t)} = \frac{\delta t_0}{R_0}$$

- We have assumed that R(t) does not change significantly over the interval(s) δt , i.e., $\dot{R}/R \, \delta t \ll 1$ (this implies age of the Universe $\sim R/\dot{R} \gg \delta t$, the time-period of the wave).
- Since $R_0 > R(t)$, we have $\delta t_0 > \delta t$.
- This is simply the cosmological time dilation. Events observed take longer ("stretched") than they happen in their rest frame.

Cosmological redshift

- We have $\delta t/R(t) = \delta t_0/R_0$.
- Now, the frequency of the light wave is simply $\nu = 1/\delta t$. We thus obtain

$$\frac{\nu_0}{\nu} = \frac{R(t)}{R_0} \Longrightarrow \frac{\lambda_0}{\lambda} = \frac{R_0}{R(t)}$$

► The **redshift** is defined as

$$z \equiv rac{\lambda_0 - \lambda}{\lambda} = rac{\lambda_0}{\lambda} - 1.$$

Thus the redshift is related to the scale factors by the relation

$$1+z=\frac{R_0}{R(t)}.$$

- This implies that if we can measure the redshift of a light signal originating from a distant galaxy, we can estimate the size of the Universe (relative to today) when the signal originated.
- Measurement of *z*, along with the knowledge of the function $R(t)/R_0$, allows us to estimate *t* when the light was emitted.
- Similarly, knowledge of t and R(t) allows us to calculate the distance

$$d_P = R(t)\chi = c R(t) \int_t^{t_0} \frac{\mathrm{d}t'}{R(t')}$$

• Often z is used as a proxy for time and also distance. Present epoch corresponds to z = 0. Tirthankar Roy Choudhury

Example of redshifts: quasars (Lyman- α emission line)

Note that according to this interpretation, the redshift is simply a consequence of expansion of the spacetime. Tirthankar Roy Choudhury

$$R(t) = R_0 \left(\frac{t}{t_0}\right)^{\alpha} \Longrightarrow H(t) = \frac{\alpha}{t}, \ H_0 = \frac{\alpha}{t_0}.$$

• Hence H(t) approximately measures the age of the Universe at the epoch t. Its present value is written as

$$H_0 = 100 \ h \ \mathrm{km} \ \mathrm{s}^{-1} \ \mathrm{Mpc}^{-1},$$

with $h \approx 0.7$ (measured). The corresponding time-scale is

$$t_0 \approx 10^{10} h^{-1} \mathrm{yrs}$$

which is roughly the age of the universe.

Tirthankar Roy Choudhury

• If we assume that a fundamental observer (galaxy) is at a coordinate distance χ , its proper distance is

$$d_P(t)=R(t)\chi.$$

The velocity with which it is moving away is

Hubble-Lemaitre law

$$\chi_P = \dot{R}(t)\chi = H(t)d_P, \quad H(t) \equiv \dot{R}/R.$$

H(t) is the **Hubble function/parameter**.

- If the galaxy is close to us, then the time of measurement corresponds to $t \approx t_0$ and hence we recover Hubble's law in its traditional form $v_P = H_0 d_P$.
- Note that [H] = 1/t. Hence $H^{-1}(t)$ defines a time-scale.
- ► The s sume that the Universe expands as a power-law

Comoving distance in terms of z

- ► Since z is directly observable, it is convenient if all quantities are expressed as functions of z.
- Let us first express R(t) in terms of z. This is easy as we have

$$R(t) = \frac{R_0}{1+z}$$

• Next, we need to express χ in terms of z. Since $d\chi/dt = -c/R(t)$ for photons coming towards us, we have

$$\chi = \int_0^{\chi} \mathrm{d}\chi' = -c \int_{t_0}^t \frac{\mathrm{d}t'}{R(t')}$$

• We already know to express R(t) in terms of z. We only need to express dt in terms of dz. We can do this as

$$dz = d(1+z) = d\left(\frac{R_0}{R}\right) = -\frac{R_0}{R^2} dR = -\frac{R_0}{R^2} \dot{R} dt = -\frac{R_0}{R} \frac{\dot{R}}{R} dt = -(1+z) H(z) dt.$$

► Hence the comoving distance is

$$d_{C} = R_{0}\chi = -c R_{0} \int_{t_{0}}^{t} \frac{\mathrm{d}t'}{R(t')} = +c R_{0} \int_{0}^{z} \frac{\mathrm{d}z'}{(1+z')H(z')} \times \frac{1+z'}{R_{0}} = c \int_{0}^{z} \frac{\mathrm{d}z'}{H(z')}.$$

• Often, c/H(z) is called the **Hubble distance**, then the comoving distance is just the integral of the Hubble distance. Tirthankar Roy Choudhury

Proper distance in terms of *z*

► The proper distance is related to the redshift through the relation

$$d_P(z) = \frac{R(t)}{R_0} d_C(z) = \frac{c}{1+z} \int_0^z \frac{\mathrm{d}z'}{H(z')}.$$

Clearly, this is not the simple Hubble-Lemaitre law.

- In fact, Hubble derived his law of expanding universe as $z = H_0 d_P / c$ but his observations were limited to galaxies with redshifts z < 0.003.
- When $z \ll 1$, we can assume that H(z) is almost constant and is equal to its present value H_0 :

$$d_P(z) pprox rac{c}{H_0} \int_0^z \mathrm{d}z' = rac{c z}{H_0}$$

Tirthankar Roy Choudhury

Acceleration of the expansion

- To understand how the Hubble-Lemaitre law is modified for slightly higher values of z, let us expand in a power series and retain the next order terms.
- Let us start with the expansion around $t = t_0$

$$\begin{aligned} \mathcal{R}(t) &\approx R_0 + (t - t_0) \dot{R}_0 + \frac{1}{2} (t - t_0)^2 \ddot{R}_0 + \dots \\ &= R_0 + (t - t_0) \left. \frac{\dot{R}}{R} \right|_{t_0} R_0 + \frac{1}{2} (t - t_0)^2 \left. \frac{\ddot{R} R}{\dot{R}^2} \right|_{t_0} \frac{\dot{R}^2}{R^2} \right|_{t_0} R_0 + \dots \\ &= R_0 \left[1 + (t - t_0) H_0 - \frac{1}{2} (t - t_0)^2 q_0 H_0^2 + \dots \right], \end{aligned}$$

where $q_0=-\ddot{\it R}_0~\it R_0/\dot{\it R}_0^2$.

Note that the acceleration of the expansion is measured by the quantity \ddot{R} . It is customary to define the **deceleration parameter** as

$$q(t) \equiv -\frac{\ddot{R}R}{\dot{R}^2} = -\frac{\ddot{R}}{R}\frac{1}{H^2}.$$

• Also note that the derivative of H(t) can be expressed in terms of q as

$$\dot{H}(t) = \frac{\ddot{R}}{R} - \frac{\dot{R}^2}{R^2} = -q(t)H^2(t) - H^2(t) = -H^2(t)[1+q(t)].$$

Series expansions in z

- Often it is useful to make expansions in powers of z.
- The derivation of the series expansion of $d_P(z)$ is obtained from the following sequence:
 - 1. Using the series of R(t), obtain the expansion for *z*:

$$z(t) = \frac{R_0}{R(t)} - 1 = H_0(t_0 - t) + (t_0 - t)^2 H_0^2 \left(1 + \frac{q_0}{2}\right) + \dots$$

2. Invert it to obtain

$$t_0 - t = H_0^{-1} \left[z - \left(1 + \frac{q_0}{2} \right) z^2 + \ldots \right].$$

3. Finally, expand 1/H in terms of t and then use the above expansion to get

$$\frac{1}{H(z)} = \frac{1}{H_0} - \frac{\dot{H}_0}{H_0^2} (t - t_0) + \ldots = \frac{1}{H_0} - (1 + q_0) H_0^{-1} z + \ldots$$

• Putting this in the expression for $d_P(z)$, we obtain the result

$$d_P(z) = rac{c}{1+z} \int_0^z rac{dz'}{H(z')} = rac{c}{H_0} \left[z - rac{1}{2} (3+q_0) z^2 + \ldots
ight].$$

- ► The lowest order term is the Hubble law. However, there are higher order corrections for larger values of *z* which depend on the derivatives of *H*.
- The comoving distance as a series expansion in *z* is

$$d_C(z) = c \int_0^z \frac{\mathrm{d}z}{H(z)} = d_P(z)(1+z) = \frac{c}{H_0} \left[z - \frac{1}{2}(1+q_0)z^2 + \dots \right]$$

Look-back time and age

► The look-back time is given by

$$t_0 - t = \int_t^{t_0} \mathrm{d}t = \int_0^z \frac{\mathrm{d}z}{(1+z)H(z)}.$$

► The age is given by

$$t = \int_0^t \mathrm{d}t = \int_z^\infty \frac{\mathrm{d}z}{(1+z)H(z)}.$$

Angular diameter distance

- Unfortunately, there is no direct way of measuring the proper or comoving distance to an object.
- In cosmology, the distance to an object far away can be measured via observations in more than one ways.
- The first one is to measure the angular size of the object, and if we somehow know its intrinsic size (say it is a "standard ruler"), we can estimate its distance. This is known as the angular diameter distance.
- Assuming the object has a proper size D and subtends an angle $\delta\theta$, then its distance in Euclidean geometry would be $d_A = D/\delta\theta$. This is the operational definition of the angular diameter distance.
- The proper transverse size D of a object subtending an angle $\delta\theta$ at distance χ is obtained by putting $dt = dr = d\phi = 0$ $D = R(t)S_k(\chi)\delta\theta,$

where *t* is the time at which the photon was emitted from χ . $d_A(t) \equiv rac{D}{\delta heta} = R(t)S_k(\chi).$ The angular diameter distance is thus

$$d_A(z) = rac{R_0 S_k(\chi)}{1+z}, \ \ \chi = rac{c}{R_0} \int_0^z rac{\mathrm{d} z'}{H(z')}.$$

• Note that for flat universe (k = 0)

$$d_A(z) = \frac{c}{1+z} \int_0^z \frac{\mathrm{d}z'}{H(z')} = d_P(z)$$

is independent of R_0 .

Luminosity distance

- ► A second way of defining distance would be to use the flux-luminosity relation.
- ► In Euclidean geometry, the luminosity *L* (of an isotropic source) and the observed flux *F* are related by

This is the operational definition of the **luminosity distance** d_L .

- ► For simplicity, let us assume the emitter is monochromatic.
- ► The luminosity is the energy emitted per unit time

$$L \equiv \frac{\delta E}{\delta t} = \frac{\delta N_{\gamma} h_{P} \nu}{\delta t},$$

 $F = \frac{L}{4\pi d_t^2}.$

where δN_{γ} is number of photons emitted.

► The flux is defined as the energy received per unit time per unit area

$$F \equiv \frac{\delta N_{\gamma} \ h_{P} \nu_{0}}{\delta A \ \delta t_{0}},$$

where we have assumed that frequency and the time interval may change because of expansion.

• In the Euclidean case, $\nu_0 = \nu$, $\delta t_0 = \delta t$ and $\delta A = 4\pi d_L^2$, hence we recover the familiar relation.

Luminosity distance (contd)

- Now, there are three effects which have to be accounted for
 - 1. The photons emitted from a source at time t at distance χ , while reaching us, would be distributed over a sphere of surface area

$$\delta A = 4\pi R_0^2 r^2 = 4\pi R_0^2 S_k^2(\chi).$$

- 2. The frequency of the photons would be shifted to $\nu \rightarrow \nu_0 = \nu R(t)/R_0 = \nu/(1+z)$.
- 3. The arrival time interval would be changed to $\delta t_0 = \delta t R_0 / R(t) = \delta t (1 + z)$.
- So we have

$$F = \frac{\delta N_{\gamma} \ h_{P} \nu_{0}}{\delta A \ \delta t_{0}} = \frac{\delta N_{\gamma} \ [h_{P} \nu / (1+z)]}{4\pi R_{0}^{2} S_{k}^{2}(\chi) \ [\delta t \ (1+z)]} = \frac{L}{4\pi R_{0}^{2} S_{k}^{2}(\chi) (1+z)^{2}}$$

► This implies that the luminosity distance will be given by

$$d_L(z) = R_0 S_k(\chi)(1+z).$$

- ▶ Note that in general $d_L(t) \neq d_A(t) \neq d_P(t) \neq d_C(t)$. In fact $d_L(z) = d_A(z) (1 + z)^2$.
- ▶ In modern days, the Hubble-Lemaitre law is represented in terms of $d_L(z)$. Let us first expand

$$S_k(\chi) = \frac{\sin\left(\sqrt{k}\,\chi\right)}{\sqrt{k}} = \chi - \frac{k}{6}\chi^3 + \ldots = \frac{c\,H_0^{-1}}{R_0}\left[z - \frac{1}{2}(1+q_0)z^2\right] - \mathcal{O}(z^3) + \ldots$$

Then

$$d_L(z) = rac{c}{H_0} \left[z + rac{1}{2} \left(1 - q_0
ight) z^2 + \ldots
ight].$$

Distance modulus

- ► In optical, UV, NIR bands, luminosities and fluxes are measured using the **magnitude system**.
- The **apparent magnitude** of an object is defined in terms of the observed flux

$$m = -2.5 \log_{10}(F/F_0)$$

where F_0 is a constant chosen based on some pre-determined convention.

- For example, one can choose Vega to represent magnitude zero so that $F_0 = F_{\text{vega}}$. In recent times, other conventions are used too (e.g., AB-magnitude).
- Similarly, the **absolute magnitude** is defined in terms of the luminosity by a similar relation

$$M = -2.5 \log_{10}(L/L_1).$$

► Clearly,

$$\mathsf{M} = -2.5 \log_{10} \left(4\pi d_L^2 F/L_1 \right) = -2.5 \log_{10} \left(F/F_0 \right) - 2.5 \log_{10} \left(4\pi d_L^2 F_0/L_1 \right) = \mathsf{m} - 2.5 \log_{10} \left(4\pi d_L^2 F_0/L_1 \right)$$

► The constant is chosen such that the absolute magnitude equals the apparent magnitude the object would have if it were at a standard distance (10 parsec) away from the observer. Hence $L_1 = 4\pi (10 \text{pc})^2 F_0$ and

$$M = m - 5 \log_{10} \left(d_L / 10 \mathrm{pc} \right).$$

A related quantity is

$$m - M = 5 \log_{10} \left(d_L / 10 \mathrm{pc} \right)$$

which is known as the distance modulus. It is a measure of the luminosity distance to the source.

K-correction

• In general, we observe only in a limited frequency range $[\nu_1, \nu_2]$. In Euclidean space, the bandpass flux is

$$F_{\rm BP} = \frac{1}{4\pi d_L^2} \int_{\nu_1}^{\nu_2} d\nu \ L_{\nu}(\nu).$$

• We can define $m_{\text{BP}} = -2.5 \log_{10}(F_{\text{BP}}/F_{0,\text{BP}})$ and $M_{\text{BP}} = -2.5 \log_{10}\left[\int_{\nu_1}^{\nu_2} d\nu L_{\nu}(\nu)/L_{1,\text{BP}}\right]$, with

 $L_{1,BP} = 4\pi (10 \text{pc})^2 F_{0,BP}$ to obtain the standard distance modulus relation $m_{BP} - M_{BP} = 5 \log_{10} (d_L/10 \text{pc})$. In an expanding universe, redshift implies that the detected light was actually emitted at higher frequencies

$$F_{\rm BP} = \frac{1}{4\pi d_L^2} \int_{\nu_1(1+z)}^{\nu_2(1+z)} {\rm d}\nu \ L_{\nu}(\nu).$$

• Assuming the same relations for m_{BP} and M_{BP} as in the Euclidean case, we can show that

$$m_{\rm BP} - M_{\rm BP} = 5\log_{10}\left(d_L/10\rm{pc}\right) + K(z),$$

where the extra correction, known as K-correction, is

$$K(z) = -2.5 \log_{10} \left[\frac{\int_{\nu_1(1+z)}^{\nu_2(1+z)} d\nu \ L_{\nu}(\nu)}{\int_{\nu_1}^{\nu_2} d\nu \ L_{\nu}(\nu)} \right] = -2.5 \log_{10}(1+z) - 2.5 \log_{10} \left[\frac{\int_{\nu_1}^{\nu_2} d\nu \ L_{\nu}[\nu(1+z)]}{\int_{\nu_1}^{\nu_2} d\nu \ L_{\nu}(\nu)} \right]$$

▶ This correction is important while comparing properties of galaxies at different redshifts.

For a source with $L_{\nu} \propto \nu^{-\alpha}$, we can show that $K(z) = 2.5(\alpha - 1) \log_{10}(1 + z)$. Thus sources with $\alpha \approx 1$ (say, quasars) have negligible correction.

