Cosmology

Lecture 3

FLRW kinematics: redshift and distances

Tirthankar Roy Choudhury
National Centre for Radio Astrophysics
Tata Institute of Fundamental Research
Pune

Physical and comoving distances

- Since we will be talking about observations, let us write the metric putting back the quantity c

$$
\begin{aligned}
\mathrm{d} s^{2} & =c^{2} \mathrm{~d} t^{2}-R^{2}(t)\left[\mathrm{d} \chi^{2}+S_{k}^{2}(\chi)\left(\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right] \\
& =c^{2} \mathrm{~d} t^{2}-R^{2}(t)\left[\frac{\mathrm{d} r^{2}}{1-k r^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right]
\end{aligned}
$$

- The physical or proper distance to a point with coordinate r is obtained by putting $\mathrm{d} t=\mathrm{d} \theta=\mathrm{d} \phi=0$

$$
d_{P}=R(t) \chi=R(t) \int \frac{\mathrm{d} r}{\sqrt{1-k r^{2}}}=R(t) S_{k}^{-1}(r)
$$

- The comoving distance to the same point is defined as the distance if it was measured at the present epoch and is given by

$$
d_{C}=R_{0} \chi=R_{0} S_{k}^{-1}(r)
$$

- Clearly, the proper distance between two fundamental observers increases $\propto R(t)$, while the comoving distance remains constant:

$$
d_{P}=\frac{R(t)}{R_{0}} d_{C}
$$

The coordinate systems

Physical/proper coordinates

Emission and receiving of electromagnetic wave

- The propagation of photons (radially) is governed by the equation

$$
0=\mathrm{d} s^{2}=c^{2} \mathrm{~d} t^{2}-R^{2}(t) \mathrm{d} \chi^{2} \Longrightarrow \mathrm{~d} \chi / \mathrm{d} t=-c / R(t)
$$

where the negative sign implies "incoming" photons.

- Consider a wavecrest which is emitted at t from some distant galaxy situated at coordinates χ. This signal is received by an observer on earth at the present epoch t_{0}.

- The next wavecrest is emitted at $t+\delta t$ and is received at $t_{0}+\delta t_{0}$.
- The comoving distance travelled by light between the two points is just the comoving distance to the galaxy and is given by

$$
R_{0} \chi=R_{0} c \int_{t}^{t_{0}} \frac{\mathrm{~d} t^{\prime}}{R\left(t^{\prime}\right)}=R_{0} c \int_{t+\delta t}^{t_{0}+\delta t_{0}} \frac{\mathrm{~d} t^{\prime}}{R\left(t^{\prime}\right)}
$$

Cosmological time dilation

- The integral can be broken into three parts using

$$
\int_{t}^{t_{0}}=\int_{t}^{t+\delta t}+\int_{t+\delta t}^{t_{0}+\delta t_{0}}-\int_{t_{0}}^{t_{0}+\delta t_{0}} \Longrightarrow \int_{t}^{t+\delta t} \frac{\mathrm{~d} t^{\prime}}{R\left(t^{\prime}\right)}=\int_{t_{0}}^{t_{0}+\delta t_{0}} \frac{\mathrm{~d} t^{\prime}}{R\left(t^{\prime}\right)}
$$

Now, if R does not change over the time-scales of δt and δt_{0}, we can take it out of the integral and hence

$$
\frac{\delta t}{R(t)}=\frac{\delta t_{0}}{R_{0}}
$$

- We have assumed that $R(t)$ does not change significantly over the interval(s) δt, i.e., $\dot{R} / R \delta t \ll 1$ (this implies age of the Universe $\sim R / \dot{R} \gg \delta t$, the time-period of the wave).
- Since $R_{0}>R(t)$, we have $\delta t_{0}>\delta t$.
- This is simply the cosmological time dilation. Events observed take longer ("stretched") than they happen in their rest frame.

Cosmological redshift

- We have $\delta t / R(t)=\delta t_{0} / R_{0}$.
- Now, the frequency of the light wave is simply $\nu=1 / \delta t$. We thus obtain

$$
\frac{\nu_{0}}{\nu}=\frac{R(t)}{R_{0}} \Longrightarrow \frac{\lambda_{0}}{\lambda}=\frac{R_{0}}{R(t)}
$$

- The redshift is defined as

$$
z \equiv \frac{\lambda_{0}-\lambda}{\lambda}=\frac{\lambda_{0}}{\lambda}-1
$$

Thus the redshift is related to the scale factors by the relation

$$
1+z=\frac{R_{0}}{R(t)}
$$

- This implies that if we can measure the redshift of a light signal originating from a distant galaxy, we can estimate the size of the Universe (relative to today) when the signal originated.
- Measurement of z, along with the knowledge of the function $R(t) / R_{0}$, allows us to estimate t when the light was emitted.
- Similarly, knowledge of t and $R(t)$ allows us to calculate the distance

$$
d_{p}=R(t) \chi=c R(t) \int_{t}^{t_{0}} \frac{\mathrm{~d} t^{\prime}}{R\left(t^{\prime}\right)}
$$

- Often z is used as a proxy for time and also distance. Present epoch corresponds to $z=0$.

Example of redshifts: quasars (Lyman- α emission line)

Note that according to this interpretation, the redshift is simply a consequence of expansion of the spacetime.

Hubble-Lemaitre law

- If we assume that a fundamental observer (galaxy) is at a coordinate distance χ, its proper distance is

$$
d_{P}(t)=R(t) \chi
$$

- The velocity with which it is moving away is

$$
v_{P}=\dot{R}(t) \chi=H(t) d_{P}, \quad H(t) \equiv \dot{R} / R
$$

$H(t)$ is the Hubble function/parameter.

- If the galaxy is close to us, then the time of measurement corresponds to $t \approx t_{0}$ and hence we recover Hubble's law in its traditional form $v_{P}=H_{0} d_{p}$.
- Note that $[H]=1 / t$. Hence $H^{-1}(t)$ defines a time-scale.
- The significance of this time-scale can be understood if we assume that the Universe expands as a power-law

$$
R(t)=R_{0}\left(\frac{t}{t_{0}}\right)^{\alpha} \Longrightarrow H(t)=\frac{\alpha}{t}, \quad H_{0}=\frac{\alpha}{t_{0}}
$$

- Hence $H(t)$ approximately measures the age of the Universe at the epoch t. Its present value is written as

$$
H_{0}=100 \mathrm{hkm} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}
$$

with $h \approx 0.7$ (measured). The corresponding time-scale is

$$
t_{0} \approx 10^{10} h^{-1} \mathrm{yrs}
$$

which is roughly the age of the universe.

Comoving distance in terms of z

- Since z is directly observable, it is convenient if all quantities are expressed as functions of z.
- Let us first express $R(t)$ in terms of z. This is easy as we have

$$
R(t)=\frac{R_{0}}{1+z}
$$

- Next, we need to express χ in terms of z. Since $\mathrm{d} \chi / \mathrm{d} t=-c / R(t)$ for photons coming towards us, we have

$$
\chi=\int_{0}^{\chi} \mathrm{d} \chi^{\prime}=-c \int_{t_{0}}^{t} \frac{\mathrm{~d} t^{\prime}}{R\left(t^{\prime}\right)}
$$

- We already know to express $R(t)$ in terms of z. We only need to express $\mathrm{d} t$ in terms of $\mathrm{d} z$. We can do this as

$$
\mathrm{d} z=\mathrm{d}(1+z)=\mathrm{d}\left(\frac{R_{0}}{R}\right)=-\frac{R_{0}}{R^{2}} \mathrm{~d} R=-\frac{R_{0}}{R^{2}} \dot{R} \mathrm{~d} t=-\frac{R_{0}}{R} \frac{\dot{R}}{R} \mathrm{~d} t=-(1+z) H(z) \mathrm{d} t .
$$

Hence the comoving distance is

$$
d_{C}=R_{0} \chi=-c R_{0} \int_{t_{0}}^{t} \frac{\mathrm{~d} t^{\prime}}{R\left(t^{\prime}\right)}=+c R_{0} \int_{0}^{z} \frac{\mathrm{~d} z^{\prime}}{\left(1+z^{\prime}\right) H\left(z^{\prime}\right)} \times \frac{1+z^{\prime}}{R_{0}}=c \int_{0}^{z} \frac{\mathrm{~d} z^{\prime}}{H\left(z^{\prime}\right)} .
$$

- Often, $c / H(z)$ is called the Hubble distance, then the comoving distance is just the integral of the Hubble distance.

Proper distance in terms of z

- The proper distance is related to the redshift through the relation

$$
d_{p}(z)=\frac{R(t)}{R_{0}} d_{C}(z)=\frac{c}{1+z} \int_{0}^{z} \frac{\mathrm{~d} z^{\prime}}{H\left(z^{\prime}\right)}
$$

Clearly, this is not the simple Hubble-Lemaitre law.

- In fact, Hubble derived his law of expanding universe as $z=H_{0} d_{P} / c$ but his observations were limited to galaxies with redshifts $z<0.003$.
- When $z \ll 1$, we can assume that $H(z)$ is almost constant and is equal to its present value H_{0} :

$$
d_{P}(z) \approx \frac{c}{H_{0}} \int_{0}^{z} \mathrm{~d} z^{\prime}=\frac{c z}{H_{0}}
$$

Acceleration of the expansion

- To understand how the Hubble-Lemaitre law is modified for slightly higher values of z, let us expand in a power series and retain the next order terms.
- Let us start with the expansion around $t=t_{0}$

$$
\begin{aligned}
R(t) & \approx R_{0}+\left(t-t_{0}\right) \dot{R}_{0}+\frac{1}{2}\left(t-t_{0}\right)^{2} \ddot{R}_{0}+\ldots \\
& =R_{0}+\left.\left(t-t_{0}\right) \frac{\dot{R}}{R}\right|_{t_{0}} R_{0}+\left.\left.\frac{1}{2}\left(t-t_{0}\right)^{2} \frac{\ddot{R} R}{\dot{R}^{2}}\right|_{t_{0}} \frac{\dot{R}^{2}}{R^{2}}\right|_{t_{0}} R_{0}+\ldots \\
& =R_{0}\left[1+\left(t-t_{0}\right) H_{0}-\frac{1}{2}\left(t-t_{0}\right)^{2} q_{0} H_{0}^{2}+\ldots\right],
\end{aligned}
$$

where $q_{0}=-\ddot{R}_{0} R_{0} / \dot{R}_{0}^{2}$.

- Note that the acceleration of the expansion is measured by the quantity \ddot{R}. It is customary to define the deceleration parameter as

$$
q(t) \equiv-\frac{\ddot{R} R}{\dot{R}^{2}}=-\frac{\ddot{R}}{R} \frac{1}{H^{2}} .
$$

- Also note that the derivative of $H(t)$ can be expressed in terms of q as

$$
\dot{H}(t)=\frac{\ddot{R}}{R}-\frac{\dot{R}^{2}}{R^{2}}=-q(t) H^{2}(t)-H^{2}(t)=-H^{2}(t)[1+q(t)] .
$$

Series expansions in z

- Often it is useful to make expansions in powers of z.
- The derivation of the series expansion of $d_{P}(z)$ is obtained from the following sequence:

1. Using the series of $R(t)$, obtain the expansion for z :

$$
z(t)=\frac{R_{0}}{R(t)}-1=H_{0}\left(t_{0}-t\right)+\left(t_{0}-t\right)^{2} H_{0}^{2}\left(1+\frac{q_{0}}{2}\right)+\ldots
$$

2. Invert it to obtain

$$
t_{0}-t=H_{0}^{-1}\left[z-\left(1+\frac{q_{0}}{2}\right) z^{2}+\ldots\right]
$$

3. Finally, expand $1 / H$ in terms of t and then use the above expansion to get

$$
\frac{1}{H(z)}=\frac{1}{H_{0}}-\frac{\dot{H}_{0}}{H_{0}^{2}}\left(t-t_{0}\right)+\ldots=\frac{1}{H_{0}}-\left(1+q_{0}\right) H_{0}^{-1} z+\ldots
$$

- Putting this in the expression for $d_{P}(z)$, we obtain the result

$$
d_{P}(z)=\frac{c}{1+z} \int_{0}^{z} \frac{\mathrm{~d} z^{\prime}}{H\left(z^{\prime}\right)}=\frac{c}{H_{0}}\left[z-\frac{1}{2}\left(3+q_{0}\right) z^{2}+\ldots\right] .
$$

- The lowest order term is the Hubble law. However, there are higher order corrections for larger values of z which depend on the derivatives of H.
- The comoving distance as a series expansion in z is

$$
d_{C}(z)=c \int_{0}^{z} \frac{\mathrm{~d} z}{H(z)}=d_{P}(z)(1+z)=\frac{c}{H_{0}}\left[z-\frac{1}{2}\left(1+q_{0}\right) z^{2}+\ldots\right] .
$$

Look-back time and age

- The look-back time is given by

$$
t_{0}-t=\int_{t}^{t_{0}} \mathrm{~d} t=\int_{0}^{z} \frac{\mathrm{~d} z}{(1+z) H(z)}
$$

- The age is given by

$$
t=\int_{0}^{t} \mathrm{~d} t=\int_{z}^{\infty} \frac{\mathrm{d} z}{(1+z) H(z)}
$$

Angular diameter distance

- Unfortunately, there is no direct way of measuring the proper or comoving distance to an object.
- In cosmology, the distance to an object far away can be measured via observations in more than one ways.
- The first one is to measure the angular size of the object, and if we somehow know its intrinsic size (say it is a "standard ruler"), we can estimate its distance. This is known as the angular diameter distance.
- Assuming the object has a proper size D and subtends an angle $\delta \theta$, then its distance in Euclidean geometry would be $d_{A}=D / \delta \theta$. This is the operational definition of the angular diameter distance.
- The proper transverse size D of a object subtending an angle $\delta \theta$ at distance χ is obtained by putting $\mathrm{d} t=\mathrm{d} r=\mathrm{d} \phi=0:$

$$
D=R(t) S_{k}(\chi) \delta \theta
$$

where t is the time at which the photon was emitted from χ.

- The angular diameter distance is thus

$$
d_{A}(t) \equiv \frac{D}{\delta \theta}=R(t) S_{k}(\chi)
$$

In terms of z, this becomes

$$
d_{A}(z)=\frac{R_{0} S_{k}(\chi)}{1+z}, \quad \chi=\frac{c}{R_{0}} \int_{0}^{z} \frac{\mathrm{~d} z^{\prime}}{H\left(z^{\prime}\right)} .
$$

- Note that for flat universe $(k=0)$

$$
d_{A}(z)=\frac{c}{1+z} \int_{0}^{z} \frac{\mathrm{~d} z^{\prime}}{H\left(z^{\prime}\right)}=d_{P}(z)
$$

is independent of R_{0}.

Luminosity distance

- A second way of defining distance would be to use the flux-luminosity relation.
- In Euclidean geometry, the luminosity L (of an isotropic source) and the observed flux F are related by

$$
F=\frac{L}{4 \pi d_{L}^{2}}
$$

This is the operational definition of the luminosity distance d_{L}.

- For simplicity, let us assume the emitter is monochromatic.
- The luminosity is the energy emitted per unit time

$$
L \equiv \frac{\delta E}{\delta t}=\frac{\delta N_{\gamma} h_{P} \nu}{\delta t}
$$

where δN_{γ} is number of photons emitted.

- The flux is defined as the energy received per unit time per unit area

$$
F \equiv \frac{\delta N_{\gamma} h_{P} \nu_{0}}{\delta A \delta t_{0}}
$$

where we have assumed that frequency and the time interval may change because of expansion.

- In the Euclidean case, $\nu_{0}=\nu, \delta t_{0}=\delta t$ and $\delta A=4 \pi d_{L}^{2}$, hence we recover the familiar relation.

Luminosity distance (contd)

- Now, there are three effects which have to be accounted for

1. The photons emitted from a source at time t at distance χ, while reaching us, would be distributed over a sphere of surface area

$$
\delta A=4 \pi R_{0}^{2} r^{2}=4 \pi R_{0}^{2} S_{k}^{2}(\chi)
$$

2. The frequency of the photons would be shifted to $\nu \rightarrow \nu_{0}=\nu R(t) / R_{0}=\nu /(1+z)$.
3. The arrival time interval would be changed to $\delta t_{0}=\delta t R_{0} / R(t)=\delta t(1+z)$.

- So we have

$$
F=\frac{\delta N_{\gamma} h_{P} \nu_{0}}{\delta A \delta t_{0}}=\frac{\delta N_{\gamma}\left[h_{P \nu} /(1+z)\right]}{4 \pi R_{0}^{2} S_{k}^{2}(\chi)[\delta t(1+z)]}=\frac{L}{4 \pi R_{0}^{2} S_{k}^{2}(\chi)(1+z)^{2}}
$$

- This implies that the luminosity distance will be given by

$$
d_{L}(z)=R_{0} S_{k}(\chi)(1+z)
$$

- Note that in general $d_{L}(t) \neq d_{A}(t) \neq d_{P}(t) \neq d_{C}(t)$. In fact $d_{L}(z)=d_{A}(z)(1+z)^{2}$.
- In modern days, the Hubble-Lemaitre law is represented in terms of $d_{L}(z)$. Let us first expand

$$
S_{k}(\chi)=\frac{\sin (\sqrt{k} \chi)}{\sqrt{k}}=\chi-\frac{k}{6} \chi^{3}+\ldots=\frac{c H_{0}^{-1}}{R_{0}}\left[z-\frac{1}{2}\left(1+q_{0}\right) z^{2}\right]-\mathcal{O}\left(z^{3}\right)+\ldots
$$

- Then

$$
d_{L}(z)=\frac{c}{H_{0}}\left[z+\frac{1}{2}\left(1-q_{0}\right) z^{2}+\ldots\right]
$$

Distance modulus

- In optical, UV, NIR bands, luminosities and fluxes are measured using the magnitude system.
- The apparent magnitude of an object is defined in terms of the observed flux

$$
m=-2.5 \log _{10}\left(F / F_{0}\right)
$$

where F_{0} is a constant chosen based on some pre-determined convention.

- For example, one can choose Vega to represent magnitude zero so that $F_{0}=F_{\text {vega }}$. In recent times, other conventions are used too (e.g., AB-magnitude).
- Similarly, the absolute magnitude is defined in terms of the luminosity by a similar relation

$$
M=-2.5 \log _{10}\left(L / L_{1}\right)
$$

- Clearly,

$$
M=-2.5 \log _{10}\left(4 \pi d_{L}^{2} F / L_{1}\right)=-2.5 \log _{10}\left(F / F_{0}\right)-2.5 \log _{10}\left(4 \pi d_{L}^{2} F_{0} / L_{1}\right)=m-2.5 \log _{10}\left(4 \pi d_{L}^{2} F_{0} / L_{1}\right)
$$

- The constant is chosen such that the absolute magnitude equals the apparent magnitude the object would have if it were at a standard distance (10 parsec) away from the observer. Hence $L_{1}=4 \pi(10 \mathrm{pc})^{2} F_{0}$ and

$$
\mathcal{M}=m-5 \log _{10}\left(d_{L} / 10 \mathrm{pc}\right)
$$

A related quantity is

$$
m-M=5 \log _{10}\left(d_{L} / 10 \mathrm{pc}\right)
$$

which is known as the distance modulus. It is a measure of the luminosity distance to the source.

K-correction

- In general, we observe only in a limited frequency range $\left[\nu_{1}, \nu_{2}\right]$. In Euclidean space, the bandpass flux is

$$
F_{\mathrm{BP}}=\frac{1}{4 \pi d_{L}^{2}} \int_{\nu_{1}}^{\nu_{2}} \mathrm{~d} \nu L_{\nu}(\nu)
$$

- We can define $m_{\mathrm{BP}}=-2.5 \log _{10}\left(F_{\mathrm{BP}} / F_{0, \mathrm{BP}}\right)$ and $\mathcal{M}_{\mathrm{BP}}=-2.5 \log _{10}\left[\int_{\nu_{1}}^{\nu_{2}} \mathrm{~d} \nu L_{\nu}(\nu) / L_{1, \mathrm{BP}}\right]$, with $L_{1, \mathrm{BP}}=4 \pi(10 \mathrm{pc})^{2} F_{0, \mathrm{BP}}$ to obtain the standard distance modulus relation $m_{\mathrm{BP}}-\mathcal{M}_{\mathrm{BP}}=5 \log _{10}\left(d_{L} / 10 \mathrm{pc}\right)$.
- In an expanding universe, redshift implies that the detected light was actually emitted at higher frequencies

$$
F_{\mathrm{BP}}=\frac{1}{4 \pi d_{L}^{2}} \int_{\nu_{1}(1+z)}^{\nu_{2}(1+z)} \mathrm{d} \nu L_{\nu}(\nu)
$$

Assuming the same relations for $m_{B P}$ and $\mathcal{M}_{\mathrm{BP}}$ as in the Euclidean case, we can show that

$$
m_{\mathrm{BP}}-\mathcal{M}_{\mathrm{BP}}=5 \log _{10}\left(d_{L} / 10 \mathrm{pc}\right)+K(z)
$$

where the extra correction, known as \mathbf{K}-correction, is

$$
K(z)=-2.5 \log _{10}\left[\frac{\int_{\nu_{1}(1+z)}^{\nu_{2}(1+z)} \mathrm{d} \nu L_{\nu}(\nu)}{\int_{\nu_{1}}^{\nu_{2}} \mathrm{~d} \nu L_{\nu}(\nu)}\right]=-2.5 \log _{10}(1+z)-2.5 \log _{10}\left[\frac{\int_{\nu_{1}}^{\nu_{2}} \mathrm{~d} \nu L_{\nu}[\nu(1+z)]}{\int_{\nu_{1}}^{\nu_{2}} \mathrm{~d} \nu L_{\nu}(\nu)}\right]
$$

- This correction is important while comparing properties of galaxies at different redshifts.
- For a source with $L_{\nu} \propto \nu^{-\alpha}$, we can show that $K(z)=2.5(\alpha-1) \log _{10}(1+z)$. Thus sources with $\alpha \approx 1$ (say, quasars) have negligible correction.

