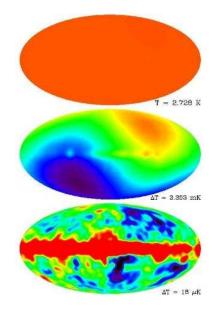
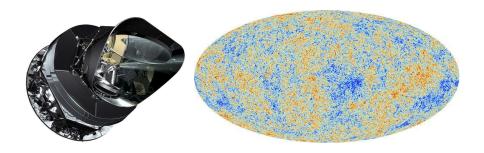
Extra-galactic Astronomy - I Cosmology

Tirthankar Roy Choudhury
National Centre for Radio Astrophysics, Pune



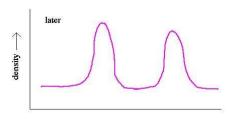
Lecture 12
IUCAA-NCRA Graduate School
NCRA
23 January 2018

L

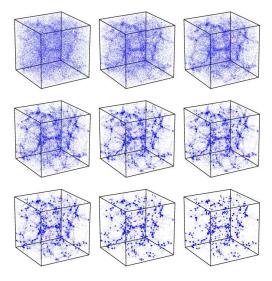

Inhomogeneities in the CMBR

Planck satellite

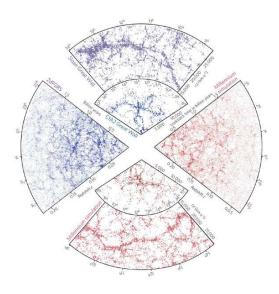
Temperature inhomogeneities $\sim 10^{-5}$ at $z\sim 1000.$ Seeds of Galaxies and all the structures we see today.


Gravitational instability

large scale fluctuations become gravitationally unstable and grow in amplitude


small scale fluctuations damp out with time

Growth of structures


Inhomogeneities grow via gravitational instability, probed by computer simulations ($z\sim 1000$ to $z\sim 0$)

Galaxy distribution

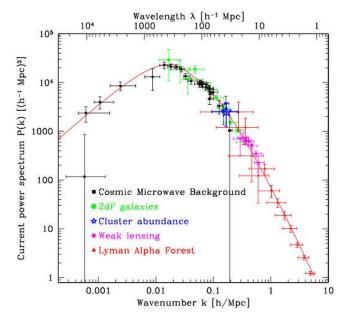
Galaxy surveys vs Millennium simulations

Power spectrum

► Define "contrast"

$$\delta(\vec{x},t) = rac{
ho(\vec{x},t)}{ar
ho(t)} - 1$$

► Fourier transform


$$\delta(\vec{k},t) = \int \mathrm{d}^3 x \; \delta(\vec{x},t) \; \mathrm{e}^{-\mathrm{i}\vec{k}\cdot\vec{x}}$$

▶ Power spectrum

$$P(k,t) \propto \langle |\delta(\vec{k},t)|^2 \rangle$$

Power spectrum of dark matter fluctuations

