Lecture plan: Part 1 (Smooth Universe) 10+1 lectures Lec 1 - Overview Lec 2 - Hubble + FLRW [Brief history of Hubble & Lemaitre; Hubble’s law; FLRW metric] Lec 3 - Kinematics [Light propagation & redshift; luminosity dist; angular diam dist; Cosmography] Lec 4 - Kinematics [K-correction; source counts; geodesic motion; BB radn] Lec 5 - Dynamics [Friedmann eqns; solutions of Friedmann eqns; age of universe; horizons; critical density] Lec 6 - Standard model [energy components - radiation (CMBR obsvn), baryons, dark matter (+evidence:vir thm, rotn curves, CMB), Lambda/dark energy (+evidence), curvature=0 (+evidence)] Lec 7 - Thermal history [distribution funcs in FLRW; relativ and non-relativ species in equilib; counting relativistic degrees of freedom] Lec 8 - Thermal history [entropy; decoupling: distributions after decoupling, neutrinos] Lec 9 - Thermal history [decoupling: recombination, WIMPS; BBN] Lec 10 - Inflation & scalar fields Lec 11 - Important epochs [a_eq; a_lastscat; a_Lambda] - Alternatives to standard model [steady state+; MOND+; mod grav+; backreaction] Lecture plan: Part 2 (Inhomogenous Universe) Lec 12 - Relativistic linear perturbation theory [perturbed quantities, gauge invariance] Lec 13 - Relativistic linear perturbation theory (contd) [resulting equation, evolution as a function of k, transfer function] Lec 14 - Transfer function, Newtonian linear perturbation theory [equations] Lec 15 - Newtonian perturbation for DM, baryons, Jeans scale Lec 16 - Zeldovich approximation, Spherical collapse Lec 17 - Statistical quantities: power spectrum Lec 18 - Velocity field, RSD Lec 19 - Mass function, excursion sets Lec 20 - Galaxy clustering, bias Lec 21 - Baryons, galaxy formation