Quantum & Statistical Mechanics II

Class Test II : 30.11.2017

Total Marks - 25, Time - 90 Minutes

Special Instruction : Calculators are not to be used.

Short Questions : $2.5 \times 4 = 10.0$

- A 100-watt heating coil is placed in a vessel containing water and is switched on. After a while the water attains a steady temperature. If the heating coil is now removed how long would it take for the water to cool by 1°C? (Assume, specific heat of water = 4.5 KJ/Kg.°C)
- 2. In a suitable parameter-plane, draw the phase diagram of water, marking all the phases, the triple point and the critical point.
- 3. For a thermodynamic system of N particles in 3-D, prove Liouville's theorem -

$$\frac{d\rho(p,q)}{dt} = 0\,,$$

where $\rho(p,q)$ is the phase-space density of a thermodynamic system.

4. Find the Chandrasekhar mass (appropriate for a White Dwarf) in terms of the relevant fundamental constants.

Medium Questions : $5.0 \ge 3 = 15.0$

- 1. Find the critical point (V_c, T_c) for a van der Waals gas and discuss the behaviour of the system below the critical point.
- 2. Discuss the behaviour of the chemical potential (μ) for a non-interacting gas of a) fermions and b) bosons. Consider both non-relativistic and ultra-relativistic cases.
- 3. Consider a He² White Dwarf, with interior density ranging from 10⁶ g cm⁻³ on the surface to 10¹⁰ g cm⁻³ at the centre. Find whether the electrons are relativistic (or not) across this density range. What would be the Fermi temperature of the electrons at the centre?

Physical & Astrophysical Data :

$$c = 3 \times 10^{10} cms^{-1}$$

$$G = 6.6732 \times 10^{-8} cgs$$

$$\hbar = 1.0546 \times 10^{-27} cgs$$

$$m_p = 1.6726 \times 10^{-24} gm$$

$$m_e = 9.1095 \times 10^{-28} gm$$

$$M_{\odot} = 1.989 \times 10^{33} gm$$

$$e = 4.8032 \times 10^{-10} cgs$$