Quantum & Statistical Mechanics II

Class Test I : 07.11.2017

Total Marks - 25, Time - 30 Minutes

Special Instruction : Calculators are not to be used.

Multiple Choice : 1.0 x 10 = 10.0

- 1. Work done, in a free expansion process, is -
 - (a) zero
 - (b) minimum
 - (c) maximum
 - (d) positive
- 2. The ratio of the specific heat at constant pressure (C_P) and the specific heat at constant volume (C_V) is -
 - (a) equal to one
 - (b) less than one
 - (c) greater than one
 - (d) none of these
- 3. If the value of n = 0 in the equation $PV^n = C$, then the process is called
 - (a) constant volume process
 - (b) adiabatic process
 - (c) constant pressure process
 - (d) isothermal process
- 4. The area under the temperature-entropy curve (T S curve) of any thermodynamic process represents
 - (a) none of these
 - (b) heat rejected
 - (c) heat absorbed
 - (d) either heat absorbed or heat rejected
- 5. The efficiency of Joule cycle is
 - (a) greater than Carnot cycle
 - (b) less than Carnot cycle
 - (c) equal to Carnot cycle
 - (d) none of these
- 6. In a thermodynamic system, what is the conjugate intensive variable of volume?
 - (a) entropy
 - (b) temperature
 - (c) pressure
 - (d) chemical potential
- 7. The main cause for the irreversibility is
 - (a) mechanical and fluid friction
 - (b) unrestricted expansion
 - (c) heat transfer with a finite temperature difference
 - (d) all of the above

- 8. If a process is endothermic and spontaneous, which of the following must be true?
 - (a) $\Delta G > 0$ and $\Delta H > 0$
 - (b) $\Delta G > 0$ and $\Delta H < 0$
 - (c) $\Delta G > 0$ and $\Delta S > 0$
 - (d) $\Delta H > 0$ and $\Delta S > 0$
- 9. The temperatures (T_1, T_2, T_3) of a primordial black hole, a stellar remnant and an active galactic centre would have the following relation -
 - (a) $T_1 > T_2 > T_3$
 - (b) $T_1 = T_2 = T_3$
 - (c) $T_1 < T_2 < T_3$
 - (d) none of the above
- 10. On a phase diagram, the temperature and pressure at which the phase boundary between the liquid and gas ceases to exist is -
 - (a) boiling point
 - (b) critical point
 - (c) sublimation point
 - (d) triple point

Short Questions : $2.5 \times 2 = 5.0$

- 1. Consider an ideal gas of N monatomic molecules in a volume V and energy E. Find the number of micro-states $\Omega(E)$ as a function of E.
- 2. Derive the expression for average energy of an open system which is described by the grand canonical ensemble formalism.

Medium Questions : $5.0 \ge 2 = 10.0$

- 1. Consider a system consisting of 4 spin particles. Each particle has a magnetic moment μ which can point either up or down. The total magnetic moment of the system is noted as M.
 - (a) How many spin configurations (i.e., number of microscopic states) can the system have? Assume the particles to be distinguishable.
 - (b) How many different values (i.e., the number of macroscopic states) can M take?
 - (c) What is the proba bility of M = 0 in this system?
- 2. A particular gas is described by such an equation of state: $PV^2 = aT$, where *a* is a constant. For this gas, the heat capacity at constant volume C_V is constant. When the gas evolves quasistatically from the initial state of temperature T_i and volume V_i to the final state of temperature T_f and volume V_f .
 - (a) Find the change in its entropy ΔS .
 - (b) Find the change in its internal energy ΔE .

Physical & Astrophysical Data :

С	=	$3 \times 10^{10} cm s^{-1}$
G	=	$6.6732 \times 10^{-8} cgs$
ħ	=	$1.0546 \times 10^{-27} cgs$
m_p	=	$1.6726 \times 10^{-24} gm$
m_e	=	$9.1095 \times 10^{-28} gm$
M_{\odot}	=	$1.989 \times 10^{33} gm$
е	=	$4.8032 \times 10^{-10} cgs$