
General Theory of Relativity : Tutorials
Lecturer : Tirthankar Roy Choudhury

Tutors : Tapomoy Guha Sarkar & Sushan Konar

Preparatory School, SERC-THEP
Tezpur University, July 2013

• The conventions followed will be based on Classical Theory of Fields by Landau & Lifshitz.

• The signature of the metric would be (1, -1, -1, -1).

• We shall use Latin letters i, j, k, .. for four-dimensional indices, taking on values 0,1,2,3. The Greek
letters α, β, .. would imply summation over the space indices x, y, z.

• Usually we will use the units in which c = 1.

I. :

1. Using the space-time diagram discuss the concepts of simultaneity, length contraction and time-
dilation.

x′ = −t sinhφ+ x coshφ (1)
t′ = t coshφ− x sinhφ (2)

2. Show that proper time is longest along the straight world-line in STR. (twin paradox)

3. Some practice with the summation convention:

(a) Is the following statement true: aijxj = akjx
j ?

(b) Expand aijxiyj .
(c) Let Q = bijy

ixj . Substitute yi = aijx
j into it and write the result. Discuss that an expression

like Q = bija
i
jx
jxj is absurd!

(d) Show the following:

aij(x
i + yi) = aijx

i + aijy
i

aijx
iyj 6= aijy

ixj

(e) Show that aijxixj = ajix
ixj .

(f) Write the following expression in a compact form using summation convention: a11b
11 +

a21b
12 + a31b

13 + a41b
14 .

(g) Show that
∂

∂xk
(aijx

ixj) = (aki + aik)x
i. (3)

4. Show that a vector orthogonal to a time-like vector must be space-like.

5. Show that AijSij = 0 where Aij is a symmetric and Sij is an anti-symmetric tensor.



6. How many independent components are there in an antisymmetric tensor in D dimensions?

7. Show that ΛTηΛ = η.

8. There are two particles of mass m1 and m2 moving with velocities u1 and u2. Show that the
effective mass is not m1 +m2.

II. :

1. A group of N particles is seen to occupy a volume of dV = dx dy dz dpx dpy dpz in the phase space,
so that the number density of particles Π in the phase space is given by: N = Π dV . Show that is
invariant under Lorentz transformations.

2. Make a coordinate transformation to the flat space time described by cylindrical polar coordinates
to go to an uniformly rotating frame.

• Write down the new metric.
• Identify the non-inertial forces.
• Show that in the new frame a full rotation gives an excess to the circumference.
• Show that it is it not possible to synchronize clocks everywhere in such a geometry.

3. If Ai is a covariant vector and CijAiAj is an invariant, show that Cij +Cji is a contravariant tensor
of rank 2.

4. How does the Kronecker delta δik transform? Show that it is a mixed tensor.

5. Show that the Levi-Civita symbol εijkl is not a tensor. How do you make it a tensor?

III. :

1. In the Rindler space ds2 = (1 + gξ)2dη2 − dξ2.

(a) Calculate gij, gij and Christoffel symbols.
(b) Write down the geodesic equations.
(c) In the equations d2t/ds2 = 0, d2x/ds2 = 0 make a variable substitution to η, ξ co-ordinates.

Check that the corresponding equations are equivalent to geodesic equations.
(d) Make the non-relativistic limit (c → ∞) and prove, that the geodesic equation reduces to the

Newtonian non-relativistic equation d2ξ/dη2 = −g.

2. Consider parabolic coordinates p, q related to the ordinary Cartesian coordinates x, y as

p(x, y) = x, q(x, y) = y − cx2. (4)

Write the flat Euclidean metric diag(1, 1) in parabolic system. If a vector has components Ap = 1
and Aq = 0 find Ax and Ay .

3. Calculate all the Christoffel symbols for the following metric and find the geodesics.

ds2 = dθ2 + sin2 θdφ2. (5)



4. Show that

Γiki =
∂ ln
√
−g

∂xk
. (6)

Also show that

Ai;i =
1√
−g

∂(
√
−gAi)
∂xi

. (7)

IV. :

1. In non-relativistic mechanics the Lagrangian of a particle in a gravitational field is given by, Work
out the metric in the limit of weak gravitational field.

2. For the metric

ds2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2(dθ2 + sin θ2dφ2) (8)

obtain the geodesic equations and show that the motion of the particle is 1-dimensional in an effec-
tive potential of the form,

Veff(r) = −M
r

+
l2

2r2
− Ml2

r3
. (9)

V. :

1. How many independent components are there of the Riemann curvature tensor in D-space-time
dimensions?

2. Show that,
Ai;kl − Ai;lk = −AmRi

mkl. (10)

3. Show that
Ril

;i =
1

2
(gilR);i. (11)

4. Calculate the independent components of Riemann tensor for the metric on a 2-sphere :

ds2 = a2dθ2 + a2 sin2 θdφ2. (12)

VI. :

1. For the metric
ds2 = dt2 − a2(t)dr2, (13)

a. Derive the Einstein tensor Gij = Rij − 1
2
gijR.

b. For the energy momentum tensor given by T ij = diag(ρ, p, p, p) write down the conservation
equation for this metric.
c. Write down the geodesic equation and integrate it.
d. Show that the magnitude of the momentum 3-vector is ∝ 1/a.
e. Write down the equations of geodesic deviation.



2. On the surface of a sphere, show that, along the geodesic φ = constant, the geodesic deviation vector
ξ′ satisfies,

D2ξθ

Ds2
= 0,

D2ξφ

Ds2
= −ξφ(dθ/ds)2. (14)

VII. :

1. Prove the Bianchi identity given by,

Rn
ikl;m +Rn

imk;l +Rn
ilm;k = 0. (15)

2. Starting from the action
∫
R
√
−gd4x obtain the Einstein field equations.

3. Consider a spherically symmetric, static metric of the form,

ds2 = eν(r)dτ 2 − eλ(r)dr2 − r2(dθ2 + sin2 θdφ2), (16)

in presence of matter given with stress-tensor given by,

T 0
0 = ρ, T 1

1 = T 2
2 = T 3

3 = −P. (17)

Find dP/dr.

VIII. :

1. Consider the metric in the weak field limit

gik = ηik + hik, |hik| � 1, (18)

where hik are small corrections to the Minkowski metric.

(a) Show that to the lowest order in hik, the contravariant components are given by

gik = ηik − hik, (19)

where hik = ηimηknhmn.
(b) If the metric tensor has the form ηik + hik in a chosen coordinate system, it is always possi-

ble to find another coordinate system x′i where the metric has a similar form. Let us take a
infinitesimal coordinate transformation of the form

x′i = xi + ξi, (20)

where ξi are four arbitrary functions of xk of the same order of smallness as hik. Show that in
the new coordinate system

h′ik = hik −
∂ξk
∂xi
− ∂ξi
∂xk

. (21)

This type of coordinate transformations are known as gauge transformation.
(c) Show that the Ricci tensor to the lowest order is given by

Rli =
1

2

(
∂2hki
∂xk∂xl

− ∂2h

∂xi∂xl
+ 2hli +

∂2hnl
∂xi∂xn

)
, (22)

where we have defined the D’Alembertian for the Minkowski metric as

2 ≡ −ηik ∂2

∂xi∂xk
= ∇2 − ∂2

∂t2
. (23)

Calculate the Ricci scalar R and the Einstein tensor Gik.



(d) Let us define a new tensor
(24)

which is known as “trace reverse” of hik. Show that the Einstein tensor then becomes

Gik =
1

2

(
∂2h̄mi
∂xm∂xk

+
∂2h̄nk
∂xi∂xn

+ 2h̄ik − ηik
∂2h̄mn

∂xm∂xn
.

)
(25)

(e) Now use a suitable gauge transformation to reduce the Einstein tensor to a form

Gik =
1

2
2h̄ik. (26)

What are the conditions on h̄ik?
(f) Hence show that in vacuum, the weak field solutions satisfy the standard wave equation. These

are known as gravitational waves.

IX. : Assume the following Schwarzschild metric,

ds2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2(dθ2 + sin θ2dφ2) (27)

for all the problems below.

1. Find the radius of the smallest stable circular orbit.

2. Verify Kepler’s law T 2 ∝ R3.

3. A satellite of massm1 is in a stable orbit at radius r1. It ejects a small massm2 which moves radially
by a distance of 1.1 KM and goes into a stable orbit at r2. If r1 = 100 KM and r2 = 99 KM then
find the Schwarzschild radius of the gravitating object.

4. For a point source and a point-like gravitational lens derive the lens equations using the formula for
bending of light.

5. Write down the metric in the Eddington-Finkelstein coordinates defined by (t, r, θ, φ)→ (v, r, θ, φ),

t = v − r − 2M log
∣∣∣ r
2M
− 1
∣∣∣ , (28)

and discuss the nature of the light-cones.

6. Write the modified form of the metric using the following coordinate transformations,

for r > 2M, U =
( r

2M
− 1
)1/2

er/4M cosh

(
t

4M

)
(29)

V =
( r

2M
− 1
)1/2

er/4M sinh

(
t

4M

)
(30)

for r < 2M, U =
(

1− r

2M

)1/2

er/4M cosh

(
t

4M

)
(31)

V =
(

1− r

2M

)1/2

er/4M sinh

(
t

4M

)
(32)

Study the causal structure in the U − V plane.



X :

1. Derive the form of the spatial part of FRW metric by embedding a 3-D surface of constant curvature
in 4-D flat space.

2. For a cosmological model where the universe is only filled with matter with equation of state P =
wρ, calculate the form of the scale factor as a function of time.

3. Calculate the comoving distance r and the age of the universe for the following models,

• Ωm = 1 and all other Ω s are equal to zero.
• Ωm + Ωk = 1 and all other Ω s equal to zero.
• Ωλ = 1, all other Ω s are equal to zero.

XI :

1. Consider a matter component having a time-varying equation of state, i.e., P (a) = w(a)ρ(a). Find
the evolution of ρ as a function of a.

2. (a) Show that the comoving distance to a galaxy at redshift z can be expanded in a power series as

dC(z) ≡ R0S
−1
k (r) = H−1

0

[
z − 1

2
(1 + q0)z2 + . . .

]
, (33)

where

q0 ≡ −
R̈ R

Ṙ2
(34)

is the deceleration parameter at the present time t0.
(b) What is the series expansion for the proper distance dP (z) ≡ R(t)S−1

k (r)?

3. Let φ(t) be a homogeneous scalar field (i.e., independent of the spatial coordinates) having a La-
grangian

L =
1

2
φ̇2 − V (φ). (35)

Calculate the stress-energy tensor. Also calculate the pressure and density for this scalar field.
Under what condition does the equation of state become equal to -1?


