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e The conventions followed will be based on Classical Theory of Fields by Landau & Lifshitz.
e The signature of the metric would be (1, -1, -1, -1).

e We shall use Latin letters ¢, 7, k, .. for four-dimensional indices, taking on values 0,1,2,3. The Greek
letters v, 3, .. would imply summation over the space indices x, y, 2.

e Usually we will use the units in which ¢ = 1.

1. Using the space-time diagram discuss the concepts of simultaneity, length contraction and time-
dilation.

1’ = —tsinh ¢ + x cosh ¢ (1)
t' = tcosh ¢ — wsinh ¢ )

2. Show that proper time is longest along the straight world-line in STR. (twin paradox)
3. Some practice with the summation convention:

(a) Is the following statement true: a;;a? = agja’ ?
(b) Expand a;;z'y’.
(c) Let Q = bi;y'a’ . Substitute y* = a’z/ into it and write the result. Discuss that an expression

like Q = byaia’27 is absurd!

(d) Show the following:
Clij (.TZ + yl) = aijxi + Clijyi
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(e) Show that a;;z'a? = ajx'al .
(f) Write the following expression in a compact form using summation convention: a;;b'! +
12 13 14
CLglb + a31b + a41b .

(g) Show that
0

%(azjximj) = (ap; + ay)z’". 3)

4. Show that a vector orthogonal to a time-like vector must be space-like.

5. Show that AYS;; = 0 where A is a symmetric and S;; is an anti-symmetric tensor.



II. :

IIL. :

. Show that the Levi-Civita symbol e

. How many independent components are there in an antisymmetric tensor in ) dimensions?

Show that ATnA = 1.

. There are two particles of mass m; and my moving with velocities u; and us. Show that the

effective mass is not m; + ms.

. A group of N particles is seen to occupy a volume of dV' = dz dy dz dp, dp, dp. in the phase space,

so that the number density of particles II in the phase space is given by: N = I1dV . Show that is
invariant under Lorentz transformations.

. Make a coordinate transformation to the flat space time described by cylindrical polar coordinates

to go to an uniformly rotating frame.

e Write down the new metric.
e Identify the non-inertial forces.
e Show that in the new frame a full rotation gives an excess to the circumference.

e Show that it is it not possible to synchronize clocks everywhere in such a geometry.

. If A, is a covariant vector and C” A; A;j is an invariant, show that C' i 4 (7 is a contravariant tensor

of rank 2.

. How does the Kronecker delta ¢}, transform? Show that it is a mixed tensor.

ikl is not a tensor. How do you make it a tensor?

. In the Rindler space ds* = (1 + g&)?dn?* — d&>.

(a) Calculate g%, g;; and Christoffel symbols.
(b) Write down the geodesic equations.

(c) In the equations d*t/ds* = 0, d?z/ds* = 0 make a variable substitution to 7, ¢ co-ordinates.
Check that the corresponding equations are equivalent to geodesic equations.

(d) Make the non-relativistic limit (¢ — oo) and prove, that the geodesic equation reduces to the
Newtonian non-relativistic equation d*¢/dn? = —g.

. Consider parabolic coordinates p, g related to the ordinary Cartesian coordinates x, y as

p(z,y) ==z, q(z,y) =y — ca’. 4)

Write the flat Euclidean metric diag(1, 1) in parabolic system. If a vector has components A? = 1
and A? = 0 find A* and AY .

3. Calculate all the Christoffel symbols for the following metric and find the geodesics.

ds? = db* + sin® 0d¢>. (®))



4. Show that

IV.:

(6)
Also show that

(7

. In non-relativistic mechanics the Lagrangian of a particle in a gravitational field is given by, Work

out the metric in the limit of weak gravitational field.

2. For the metric

VI.:

-1
ds® = (1 - ¥) dt* — <1 - g) dr® — r*(d6* + sin 0*d¢?) (8)

obtain the geodesic equations and show that the motion of the particle is 1-dimensional in an effec-

tive potential of the form,
M 2 M
Vear(r) = = r R T T ©)

. How many independent components are there of the Riemann curvature tensor in D-space-time

dimensions?
. Show that, . ' ’
. Show that .
R = 5(g"R):. (11)

. Calculate the independent components of Riemann tensor for the metric on a 2-sphere :

ds® = a®df? + a® sin® 6d . (12)

. For the metric

ds* = dt* — a®(t)dr?, (13)

a. Derive the Einstein tensor G = R — ¢ R.

b. For the energy momentum tensor given by 7% = diag(p, p, p, p) write down the conservation
equation for this metric.

¢. Write down the geodesic equation and integrate it.

d. Show that the magnitude of the momentum 3-vector is x 1/a.

e. Write down the equations of geodesic deviation.



2. On the surface of a sphere, show that, along the geodesic ¢ = constant, the geodesic deviation vector
&' satisfies,

D2 59 D2 €¢>
Dz — 0 a2 = —£2(d0/ds)?. (14)
VIIL. :
1. Prove the Bianchi identity given by,
?kl;m + R?mk:;l + R?lm;k = 0. (15)

2. Starting from the action | R/—gd"z obtain the Einstein field equations.
3. Consider a spherically symmetric, static metric of the form,
ds? = e’ dr? — MV dr? — r2(d6? + sin® 0dg?), (16)
in presence of matter given with stress-tensor given by,
1) =p, T =T =T = —P. (17)
Find dP/dr.

VIIL. :

1. Consider the metric in the weak field limit
ik = Nik + har, Thar| < 1, (18)
where h;;, are small corrections to the Minkowski metric.
(a) Show that to the lowest order in h;x, the contravariant components are given by
gk = pit _ pik, (19)
where hi* = pimpFnh,
(b) If the metric tensor has the form 7;; + h; in a chosen coordinate system, it is always possi-

ble to find another coordinate system z* where the metric has a similar form. Let us take a
infinitesimal coordinate transformation of the form

=1+ ¢ (20)

where &' are four arbitrary functions of z* of the same order of smallness as h;;. Show that in
the new coordinate system

ih = hir — % - gj;. (1)

This type of coordinate transformations are known as gauge transformation.

(c) Show that the Ricci tensor to the lowest order is given by
21k 2 2pn
B = % (aikgxl - aiigxl Dy aiig;n) ! @2)
where we have defined the D’ Alembertian for the Minkowski metric as
Dz—ﬁkQQ :V%Ji. (23)
oxtoxk ot?

Calculate the Ricci scalar R and the Einstein tensor Gj,.



(d) Let us define a new tensor

(24)
which is known as “trace reverse” of h;;. Show that the Einstein tensor then becomes
1/ 0*h" O%h} - O*hmn
G = = L k| Ohy — e 25
9 (axmaxk dzidxm + ik =1 " Oxm oz ) (23)
(e) Now use a suitable gauge transformation to reduce the Einstein tensor to a form
1 -
G = §th’k- (26)

What are the conditions on h;;?

(f) Hence show that in vacuum, the weak field solutions satisfy the standard wave equation. These
are known as gravitational waves.

IX. : Assume the following Schwarzschild metric,

oM 2M ™
ds* = (1 - 7) t? — (1 ) T) dr® = 13(d6? + sin 6%do?) @)

for all the problems below.

1. Find the radius of the smallest stable circular orbit.
2. Verify Kepler’s law T2 oc R,

3. A satellite of mass m; is in a stable orbit at radius r;. It ejects a small mass my which moves radially
by a distance of 1.1 KM and goes into a stable orbit at 5. If ry = 100 K M and ro = 99 K M then
find the Schwarzschild radius of the gravitating object.

4. For a point source and a point-like gravitational lens derive the lens equations using the formula for
bending of light.

5. Write down the metric in the Eddington-Finkelstein coordinates defined by (¢, r, 0, ¢) — (v, 1,0, ¢),
T

t=v—r—2M1 ‘——1‘, 28

v—r 8 |57 (28)

and discuss the nature of the light-cones.
6. Write the modified form of the metric using the following coordinate transformations,
forr >2M, U = (L — 1)1/2 e/ *M cosh <LM) (29)
Vo= (L_1)1/2 ) (30)
forr <2M, U = (1—L>1/26T/4Mcosh( t ) 31D
vo= (1--5) ) (32)

Study the causal structure in the U — V plane.



X:
1. Derive the form of the spatial part of FRW metric by embedding a 3-D surface of constant curvature
in 4-D flat space.

2. For a cosmological model where the universe is only filled with matter with equation of state P =
wp, calculate the form of the scale factor as a function of time.

3. Calculate the comoving distance r and the age of the universe for the following models,

e (), = 1 and all other 2 s are equal to zero.
o O, + Q) = 1and all other €2 s equal to zero.

e (), =1, all other {2 s are equal to zero.

XI:

1. Consider a matter component having a time-varying equation of state, i.e., P(a) = w(a)p(a). Find
the evolution of p as a function of a.

2. (a) Show that the comoving distance to a galaxy at redshift z can be expanded in a power series as

1
do(2) = RS (r) = Hy' |2 = 5(1+q0)2" + .|, (33)
where ..
_ RR
qo = —F (34)

is the deceleration parameter at the present time .

(b) What is the series expansion for the proper distance dp(z) = R(t)S, ' (r)?

3. Let ¢(t) be a homogeneous scalar field (i.e., independent of the spatial coordinates) having a La-
grangian
1.
L=356"=V(9). (35)

Calculate the stress-energy tensor. Also calculate the pressure and density for this scalar field.
Under what condition does the equation of state become equal to -1?



