General Theory of Relativity : Tutorials

Lecturer : Tirthankar Roy Choudhury
Tutors : Tapomoy Guha Sarkar \& Sushan Konar
Preparatory School, SERC-THEP
Tezpur University, July 2013

- The conventions followed will be based on Classical Theory of Fields by Landau \& Lifshitz.
- The signature of the metric would be $(1,-1,-1,-1)$.
- We shall use Latin letters $i, j, k, .$. for four-dimensional indices, taking on values $0,1,2,3$. The Greek letters α, β, .. would imply summation over the space indices x, y, z.
- Usually we will use the units in which $c=1$.
I. :

1. Using the space-time diagram discuss the concepts of simultaneity, length contraction and timedilation.

$$
\begin{array}{r}
x^{\prime}=-t \sinh \phi+x \cosh \phi \\
t^{\prime}=t \cosh \phi-x \sinh \phi \tag{2}
\end{array}
$$

2. Show that proper time is longest along the straight world-line in STR. (twin paradox)
3. Some practice with the summation convention:
(a) Is the following statement true: $a_{i j} x^{j}=a_{k j} x^{j}$?
(b) Expand $a_{i j} x^{i} y^{j}$.
(c) Let $Q=b_{i j} y^{i} x^{j}$. Substitute $y^{i}=a_{j}^{i} x^{j}$ into it and write the result. Discuss that an expression like $Q=b_{i j} a_{j}^{i} x^{j} x^{j}$ is absurd!
(d) Show the following:

$$
\begin{aligned}
a_{i j}\left(x^{i}+y^{i}\right) & =a_{i j} x^{i}+a_{i j} y^{i} \\
a_{i j} x^{i} y^{j} & \neq a_{i j} y^{i} x^{j}
\end{aligned}
$$

(e) Show that $a_{i j} x^{i} x^{j}=a_{j i} x^{i} x^{j}$.
(f) Write the following expression in a compact form using summation convention: $a_{11} b^{11}+$ $a_{21} b^{12}+a_{31} b^{13}+a_{41} b^{14}$.
(g) Show that

$$
\begin{equation*}
\frac{\partial}{\partial x^{k}}\left(a_{i j} x^{i} x^{j}\right)=\left(a_{k i}+a_{i k}\right) x^{i} . \tag{3}
\end{equation*}
$$

4. Show that a vector orthogonal to a time-like vector must be space-like.
5. Show that $A^{i j} S_{i j}=0$ where $A^{i j}$ is a symmetric and $S_{i j}$ is an anti-symmetric tensor.
6. How many independent components are there in an antisymmetric tensor in D dimensions?
7. Show that $\Lambda^{T} \eta \Lambda=\eta$.
8. There are two particles of mass m_{1} and m_{2} moving with velocities u_{1} and u_{2}. Show that the effective mass is not $m_{1}+m_{2}$.
II. :
9. A group of \mathbf{N} particles is seen to occupy a volume of $d V=d x d y d z d p_{x} d p_{y} d p_{z}$ in the phase space, so that the number density of particles Π in the phase space is given by: $N=\Pi d V$. Show that is invariant under Lorentz transformations.
10. Make a coordinate transformation to the flat space time described by cylindrical polar coordinates to go to an uniformly rotating frame.

- Write down the new metric.
- Identify the non-inertial forces.
- Show that in the new frame a full rotation gives an excess to the circumference.
- Show that it is it not possible to synchronize clocks everywhere in such a geometry.

3. If A_{i} is a covariant vector and $C^{i j} A_{i} A_{j}$ is an invariant, show that $C^{i j}+C^{j i}$ is a contravariant tensor of rank 2.
4. How does the Kronecker delta δ_{k}^{i} transform? Show that it is a mixed tensor.
5. Show that the Levi-Civita symbol $\epsilon^{i j k l}$ is not a tensor. How do you make it a tensor?

III. :

1. In the Rindler space $d s^{2}=(1+g \xi)^{2} d \eta^{2}-d \xi^{2}$.
(a) Calculate $g^{i j}, g_{i j}$ and Christoffel symbols.
(b) Write down the geodesic equations.
(c) In the equations $d^{2} t / d s^{2}=0, d^{2} x / d s^{2}=0$ make a variable substitution to η, ξ co-ordinates. Check that the corresponding equations are equivalent to geodesic equations.
(d) Make the non-relativistic limit $(c \rightarrow \infty)$ and prove, that the geodesic equation reduces to the Newtonian non-relativistic equation $d^{2} \xi / d \eta^{2}=-g$.
2. Consider parabolic coordinates p, q related to the ordinary Cartesian coordinates x, y as

$$
\begin{equation*}
p(x, y)=x, q(x, y)=y-c x^{2} . \tag{4}
\end{equation*}
$$

Write the flat Euclidean metric $\operatorname{diag}(1,1)$ in parabolic system. If a vector has components $A^{p}=1$ and $A^{q}=0$ find A^{x} and A^{y}.
3. Calculate all the Christoffel symbols for the following metric and find the geodesics.

$$
\begin{equation*}
d s^{2}=d \theta^{2}+\sin ^{2} \theta d \phi^{2} \tag{5}
\end{equation*}
$$

4. Show that

$$
\begin{equation*}
\Gamma_{k i}^{i}=\frac{\partial \ln \sqrt{-g}}{\partial x^{k}} . \tag{6}
\end{equation*}
$$

Also show that

$$
\begin{equation*}
A_{; i}^{i}=\frac{1}{\sqrt{-g}} \frac{\partial\left(\sqrt{-g} A^{i}\right)}{\partial x^{i}} \tag{7}
\end{equation*}
$$

IV. :

1. In non-relativistic mechanics the Lagrangian of a particle in a gravitational field is given by, Work out the metric in the limit of weak gravitational field.
2. For the metric

$$
\begin{equation*}
d s^{2}=\left(1-\frac{2 M}{r}\right) d t^{2}-\left(1-\frac{2 M}{r}\right)^{-1} d r^{2}-r^{2}\left(d \theta^{2}+\sin \theta^{2} d \phi^{2}\right) \tag{8}
\end{equation*}
$$

obtain the geodesic equations and show that the motion of the particle is 1-dimensional in an effective potential of the form,

$$
\begin{equation*}
V_{\mathrm{eff}}(r)=-\frac{M}{r}+\frac{l^{2}}{2 r^{2}}-\frac{M l^{2}}{r^{3}} . \tag{9}
\end{equation*}
$$

V. :

1. How many independent components are there of the Riemann curvature tensor in D-space-time dimensions?
2. Show that,

$$
\begin{equation*}
A_{; k l}^{i}-A_{; l k}^{i}=-A^{m} R_{m k l}^{i} . \tag{10}
\end{equation*}
$$

3. Show that

$$
\begin{equation*}
R_{; i}^{i l}=\frac{1}{2}\left(g^{i l} R\right)_{; i} . \tag{11}
\end{equation*}
$$

4. Calculate the independent components of Riemann tensor for the metric on a 2 -sphere :

$$
\begin{equation*}
d s^{2}=a^{2} d \theta^{2}+a^{2} \sin ^{2} \theta d \phi^{2} . \tag{12}
\end{equation*}
$$

VI. :

1. For the metric

$$
\begin{equation*}
d s^{2}=d t^{2}-a^{2}(t) d r^{2} \tag{13}
\end{equation*}
$$

a. Derive the Einstein tensor $G^{i j}=R^{i j}-\frac{1}{2} g^{i j} R$.
b. For the energy momentum tensor given by $T^{i j}=\operatorname{diag}(\rho, p, p, p)$ write down the conservation equation for this metric.
c. Write down the geodesic equation and integrate it.
d. Show that the magnitude of the momentum 3 -vector is $\propto 1 / a$.
e. Write down the equations of geodesic deviation.
2. On the surface of a sphere, show that, along the geodesic $\phi=$ constant, the geodesic deviation vector ξ^{\prime} satisfies,

$$
\begin{equation*}
\frac{D^{2} \xi^{\theta}}{D s^{2}}=0, \frac{D^{2} \xi^{\phi}}{D s^{2}}=-\xi^{\phi}(d \theta / d s)^{2} \tag{14}
\end{equation*}
$$

VII. :

1. Prove the Bianchi identity given by,

$$
\begin{equation*}
R_{i k l ; m}^{n}+R_{i m k ; l}^{n}+R_{i l m ; k}^{n}=0 \tag{15}
\end{equation*}
$$

2. Starting from the action $\int R \sqrt{-g} d^{4} x$ obtain the Einstein field equations.
3. Consider a spherically symmetric, static metric of the form,

$$
\begin{equation*}
d s^{2}=e^{\nu(r)} d \tau^{2}-e^{\lambda(r)} d r^{2}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \tag{16}
\end{equation*}
$$

in presence of matter given with stress-tensor given by,

$$
\begin{equation*}
T_{0}^{0}=\rho, T_{1}^{1}=T_{2}^{2}=T_{3}^{3}=-P \tag{17}
\end{equation*}
$$

Find $d P / d r$.

VIII. :

1. Consider the metric in the weak field limit

$$
\begin{equation*}
g_{i k}=\eta_{i k}+h_{i k}, \quad\left|h_{i k}\right| \ll 1, \tag{18}
\end{equation*}
$$

where $h_{i k}$ are small corrections to the Minkowski metric.
(a) Show that to the lowest order in $h_{i k}$, the contravariant components are given by

$$
\begin{equation*}
g^{i k}=\eta^{i k}-h^{i k} \tag{19}
\end{equation*}
$$

where $h^{i k}=\eta^{i m} \eta^{k n} h_{m n}$.
(b) If the metric tensor has the form $\eta_{i k}+h_{i k}$ in a chosen coordinate system, it is always possible to find another coordinate system $x^{\prime i}$ where the metric has a similar form. Let us take a infinitesimal coordinate transformation of the form

$$
\begin{equation*}
x^{\prime i}=x^{i}+\xi^{i}, \tag{20}
\end{equation*}
$$

where ξ^{i} are four arbitrary functions of x^{k} of the same order of smallness as $h_{i k}$. Show that in the new coordinate system

$$
\begin{equation*}
h_{i k}^{\prime}=h_{i k}-\frac{\partial \xi_{k}}{\partial x^{i}}-\frac{\partial \xi_{i}}{\partial x^{k}} . \tag{21}
\end{equation*}
$$

This type of coordinate transformations are known as gauge transformation.
(c) Show that the Ricci tensor to the lowest order is given by

$$
\begin{equation*}
R_{l i}=\frac{1}{2}\left(\frac{\partial^{2} h_{i}^{k}}{\partial x^{k} \partial x^{l}}-\frac{\partial^{2} h}{\partial x^{i} \partial x^{l}}+\square h_{l i}+\frac{\partial^{2} h_{l}^{n}}{\partial x^{i} \partial x^{n}}\right) \tag{22}
\end{equation*}
$$

where we have defined the D'Alembertian for the Minkowski metric as

$$
\begin{equation*}
\square \equiv-\eta^{i k} \frac{\partial^{2}}{\partial x^{i} \partial x^{k}}=\nabla^{2}-\frac{\partial^{2}}{\partial t^{2}} . \tag{23}
\end{equation*}
$$

Calculate the Ricci scalar R and the Einstein tensor $G_{i k}$.
(d) Let us define a new tensor
which is known as "trace reverse" of $h_{i k}$. Show that the Einstein tensor then becomes

$$
\begin{equation*}
G_{i k}=\frac{1}{2}\left(\frac{\partial^{2} \bar{h}_{i}^{m}}{\partial x^{m} \partial x^{k}}+\frac{\partial^{2} \bar{h}_{k}^{n}}{\partial x^{i} \partial x^{n}}+\square \bar{h}_{i k}-\eta_{i k} \frac{\partial^{2} \bar{h}^{m n}}{\partial x^{m} \partial x^{n}} .\right) \tag{25}
\end{equation*}
$$

(e) Now use a suitable gauge transformation to reduce the Einstein tensor to a form

$$
\begin{equation*}
G_{i k}=\frac{1}{2} \square \bar{h}_{i k} . \tag{26}
\end{equation*}
$$

What are the conditions on $\bar{h}_{i k}$?
(f) Hence show that in vacuum, the weak field solutions satisfy the standard wave equation. These are known as gravitational waves.
IX. : Assume the following Schwarzschild metric,

$$
\begin{equation*}
d s^{2}=\left(1-\frac{2 M}{r}\right) d t^{2}-\left(1-\frac{2 M}{r}\right)^{-1} d r^{2}-r^{2}\left(d \theta^{2}+\sin \theta^{2} d \phi^{2}\right) \tag{27}
\end{equation*}
$$

for all the problems below.

1. Find the radius of the smallest stable circular orbit.
2. Verify Kepler's law $T^{2} \propto R^{3}$.
3. A satellite of mass m_{1} is in a stable orbit at radius r_{1}. It ejects a small mass m_{2} which moves radially by a distance of 1.1 KM and goes into a stable orbit at r_{2}. If $r_{1}=100 K M$ and $r_{2}=99 K M$ then find the Schwarzschild radius of the gravitating object.
4. For a point source and a point-like gravitational lens derive the lens equations using the formula for bending of light.
5. Write down the metric in the Eddington-Finkelstein coordinates defined by $(t, r, \theta, \phi) \rightarrow(v, r, \theta, \phi)$,

$$
\begin{equation*}
t=v-r-2 M \log \left|\frac{r}{2 M}-1\right| \tag{28}
\end{equation*}
$$

and discuss the nature of the light-cones.
6. Write the modified form of the metric using the following coordinate transformations,

$$
\begin{align*}
\text { for } r>2 M, U & =\left(\frac{r}{2 M}-1\right)^{1 / 2} e^{r / 4 M} \cosh \left(\frac{t}{4 M}\right) \tag{29}\\
V & =\left(\frac{r}{2 M}-1\right)^{1 / 2} e^{r / 4 M} \sinh \left(\frac{t}{4 M}\right) \tag{30}\\
\text { for } r<2 M, U & =\left(1-\frac{r}{2 M}\right)^{1 / 2} e^{r / 4 M} \cosh \left(\frac{t}{4 M}\right) \tag{31}\\
V & =\left(1-\frac{r}{2 M}\right)^{1 / 2} e^{r / 4 M} \sinh \left(\frac{t}{4 M}\right) \tag{32}
\end{align*}
$$

Study the causal structure in the $U-V$ plane.

X :

1. Derive the form of the spatial part of FRW metric by embedding a 3-D surface of constant curvature in 4-D flat space.
2. For a cosmological model where the universe is only filled with matter with equation of state $P=$ $w \rho$, calculate the form of the scale factor as a function of time.
3. Calculate the comoving distance r and the age of the universe for the following models,

- $\Omega_{m}=1$ and all other $\Omega \mathrm{s}$ are equal to zero.
- $\Omega_{m}+\Omega_{k}=1$ and all other Ω s equal to zero.
- $\Omega_{\lambda}=1$, all other $\Omega \mathrm{s}$ are equal to zero.

XI :

1. Consider a matter component having a time-varying equation of state, i.e., $P(a)=w(a) \rho(a)$. Find the evolution of ρ as a function of a.
2. (a) Show that the comoving distance to a galaxy at redshift z can be expanded in a power series as

$$
\begin{equation*}
d_{C}(z) \equiv R_{0} S_{k}^{-1}(r)=H_{0}^{-1}\left[z-\frac{1}{2}\left(1+q_{0}\right) z^{2}+\ldots\right] \tag{33}
\end{equation*}
$$

where

$$
\begin{equation*}
q_{0} \equiv-\frac{\ddot{R} R}{\dot{R}^{2}} \tag{34}
\end{equation*}
$$

is the deceleration parameter at the present time t_{0}.
(b) What is the series expansion for the proper distance $d_{P}(z) \equiv R(t) S_{k}^{-1}(r)$?
3. Let $\phi(t)$ be a homogeneous scalar field (i.e., independent of the spatial coordinates) having a Lagrangian

$$
\begin{equation*}
L=\frac{1}{2} \dot{\phi}^{2}-V(\phi) . \tag{35}
\end{equation*}
$$

Calculate the stress-energy tensor. Also calculate the pressure and density for this scalar field. Under what condition does the equation of state become equal to -1 ?

