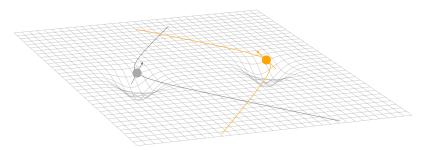
Memory Effect from Spinning Compact Binaries in Hyperbolic Orbits

Anuradha Gupta, IUCAA, Pune



In collaboration with Lorenzo D. Vittori, A. Gopakumar and P. Jetzer, arXiv:1410.6311

20 Novembmer 2014

- We present an efficient prescription to compute post-Newtonian (PN) accurate h₊ & h_× for spinning compact binaries in hyperbolic orbits.
- It turns out that both h₊ & h_× exhibit the memory effect with the inclusion of spins.
- In contrast, only h_× shows the memory effect for GWs from non-spinning compact binaries.
- Why these signals are important for pulsar timing array (PTA) searches?
- Can we detect GW memory with help of ongoing and planned PTAs?

Prescription to compute $h_{+,\times}$ for spinning binaries

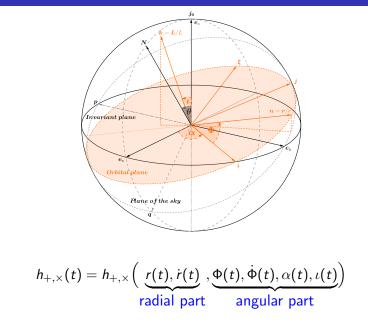
- The PN accurate expressions for $h_{+,\times}$ for binaries in general orbits $h_{+} = \frac{1}{2} (p_i p_j - q_i q_j) h_{ij}^{TT}$, $h_{\times} = \frac{1}{2} (p_i q_j + p_j q_i) h_{ij}^{TT}$
- The leading order (quadrupolar oder) expressions for $h_{+,\times}$ read

$$h_{+}|_{Q} = \frac{2G\mu}{c^{4}R} \left\{ (\mathbf{p} \cdot \mathbf{v})^{2} - (\mathbf{q} \cdot \mathbf{v})^{2} - z \left[(\mathbf{p} \cdot \mathbf{n})^{2} - (\mathbf{q} \cdot \mathbf{n})^{2} \right] \right\}$$
$$h_{\times}|_{Q} = \frac{4G\mu}{c^{4}R} \left\{ (\mathbf{p} \cdot \mathbf{v})(\mathbf{q} \cdot \mathbf{v}) - z (\mathbf{p} \cdot \mathbf{n})(\mathbf{q} \cdot \mathbf{n}) \right\}$$

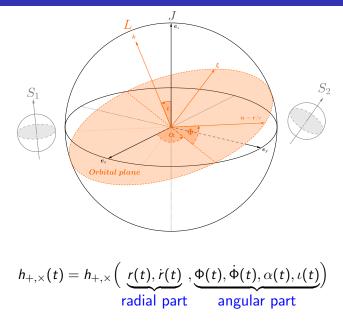
Using $h_{ij}^{\mathsf{TT}} \to h_{ij}^{\mathsf{TT}} |_{\mathsf{Q}} = \frac{4G\mu}{c^4R} \mathcal{P}_{kmij}(\mathsf{N}) \left(\mathsf{v}_{km} - \frac{Gm}{r} n_{km}\right)$

Need to get the dot products ⇒ have to describe the dynamics

The Inertial coordinate System



The Precessing Dance



Radial Part of the Dynamics

- Radial part has Keplerian-type parametric solution
- Hyperbolic Kepler equation:

 $l = \bar{n}(t - t_0) = e_t \sinh v - v \qquad r = a_r(e_r \cosh v - 1)$

can be solved numerically for v(l) through Mikkola's method.

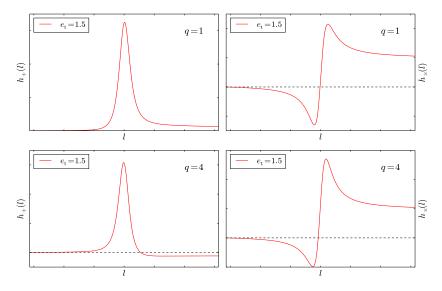
• The 1.5PN-accurate solution for r(t) and $\dot{r}(t)$ turns out to be

$$r = \frac{Gm}{c^2} \frac{1}{\bar{\xi}^{2/3}} \left\{ e_{\rm t} \cosh v - 1 - \bar{\xi}^{2/3} (...) + \bar{\xi} (...) \right\}$$
$$\dot{r} = \bar{\xi}^{1/3} \frac{c \, e_{\rm t} \, \sinh v}{e_{\rm t} \cosh v - 1} \left\{ 1 - \bar{\xi}^{2/3} (...) \right\}$$

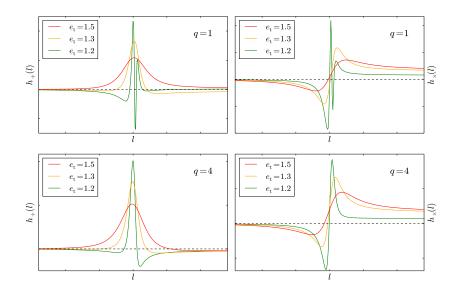
 $\bar{\xi} = \frac{G m \bar{n}}{c^3}$

- Angular part has no parametric solution
- The evolution of angular variables is obtained through a set of coupled differential equations
 - We need 9 precessional equations: $\dot{\textbf{L}}$, $\dot{\textbf{S}_1}$ and $\dot{\textbf{S}_2}$
 - We need the 1 evolution equation for $\Phi : \ \dot{\Phi}$
 - It also include 2 radiation reaction equations: \dot{e}_t and $\dot{\bar{n}}$
- We numerically solve a set of 12 differential equations and get $\Phi(t), \dot{\Phi}(t), \alpha(t), \iota(t)$ at any time during the interaction

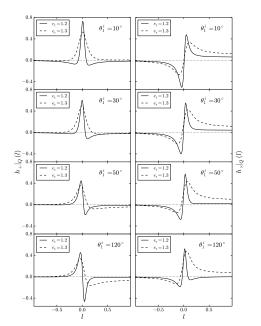
Waveform for Spinning Binaries in Hyperbolic Orbits: Effect of Mass-ratio



Effect of Eccentricity



Effect of spin orientation



10/16

Memory effect

• The Memory effect we see in the plots is

$$\Delta h^{\mathsf{mem}}_{+, imes} = \lim_{t
ightarrow +\infty} h_{+, imes}(t) - \lim_{t
ightarrow -\infty} h_{+, imes}(t)$$

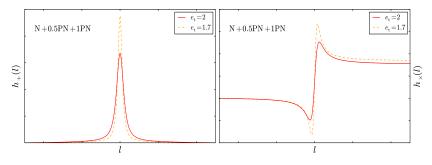
• For spinning binaries both polarizations show memory effect

$$\Delta h_{+}^{\mathrm{mem}}
eq 0$$
 and $\Delta h_{\times}^{\mathrm{mem}}
eq 0$

 However, for non-spinning binaries only cross polarization exhibits memory effect

$$\Delta h^{
m mem}_{+} = 0 \qquad {
m and} \qquad \Delta h^{
m mem}_{ imes}
eq 0$$

Waveform for non-spinning binaries



Non-spinning binary system with masses $m_1 = 8M_{\odot}$, $m_2 = 13M_{\odot}$, $r_{\min} = 2 \times 10^9 m$, and R = 21000 ly. (~ Hulse-Taylor pulsar)

\rightarrow Only the \times -polarization shows a memory!

Why GW Memory is Interesting?

Two types of GW memory

Linear memory

- Change in the time derivatives of source multipole moments
- Hyperbolic orbits
 Captured, disrupted, mass loss
 GW recoil in binary BH merger

Non-linear memory

- Change in radiative multipole moments
- Mergers of supermassive BH binaries
 - Any system that radiates GWs

Why GW Memory is Interesting?

Two types of GW memory

Linear memory

- Change in the time derivatives of source multipole moments
- Hyperbolic orbits
 Captured, disrupted, mass loss
 GW recoil in binary BH merger

Non-linear memory

- Change in radiative multipole moments
- Mergers of supermassive BH
 binaries
 A
 - Any system that radiates GWs
- It is non-oscillatory and visually distinctive in the waveform.
- GW with memory lead to permanent deformations of space-time \Rightarrow detector does not relapse to it's initial configuration
- The non-linear GW memory is observable and could be serve as a test of general relativity.

- Unfortunately, LIGO-like detectors are not the ideal instruments to detect both linear and non-linear memory effects (M. Favata'09)
- Because the internal forces present in such instruments are expected to bring the test masses back to their original configurations
- eLISA-like instruments has truly freely falling masses and could, in principle, be deformed by the passage of GW with memory

 It may be possible, in principle, to detect non-linear GW memory associated with the merger of SMBH binaries with the help of the ongoing and planned PTAs

(Seto '09; Pshirkov et al. '10; van Haasteren & Levin '10)

• $z \sim 0.1$, $M = 10^8 M_{\odot}$ mergers may be possibly detectable with 2σ constrains (van Haasteren & Levin '10) ($M = 10^{10} M_{\odot}$ will be detectable throughout the universe!)

 It may be possible, in principle, to detect non-linear GW memory associated with the merger of SMBH binaries with the help of the ongoing and planned PTAs
 (Seta 100) Behirkey at al. (10) year Haasteren & Levin (10)

(Seto '09; Pshirkov et al. '10; van Haasteren & Levin '10)

- $z \sim 0.1$, $M = 10^8 M_{\odot}$ mergers may be possibly detectable with 2σ constrains (van Haasteren & Levin '10) ($M = 10^{10} M_{\odot}$ will be detectable throughout the universe!)
- But the rates are very low: 0.1 0.01 detections in 10 yrs

 It may be possible, in principle, to detect non-linear GW memory associated with the merger of SMBH binaries with the help of the ongoing and planned PTAs
 (Sete 100; Pshirkov et al., 110; van Haastoren & Lovin 110)

(Seto '09; Pshirkov et al. '10; van Haasteren & Levin '10)

- $z \sim 0.1$, $M = 10^8 M_{\odot}$ mergers may be possibly detectable with 2σ constrains (van Haasteren & Levin '10) ($M = 10^{10} M_{\odot}$ will be detectable throughout the universe!)
- But the rates are very low: 0.1 0.01 detections in 10 yrs
- A GW memory with amplitude $h \sim 10^{-15}$ will likely become detectable (Madison et al. '14)

 It may be possible, in principle, to detect non-linear GW memory associated with the merger of SMBH binaries with the help of the ongoing and planned PTAs
 (Sete 100; Pshirkov et al., 110; van Haastoren & Lovin 110)

(Seto '09; Pshirkov et al. '10; van Haasteren & Levin '10)

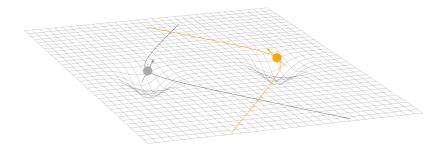
- $z \sim 0.1$, $M = 10^8 M_{\odot}$ mergers may be possibly detectable with 2σ constrains (van Haasteren & Levin '10) ($M = 10^{10} M_{\odot}$ will be detectable throughout the universe!)
- But the rates are very low: 0.1 0.01 detections in 10 yrs
- A GW memory with amplitude $h \sim 10^{-15}$ will likely become detectable (Madison et al. '14) one in thousand years or every other year!

 It may be possible, in principle, to detect non-linear GW memory associated with the merger of SMBH binaries with the help of the ongoing and planned PTAs
 (Sete 100; Pshirkov et al., 110; van Haastoren & Lovin 110)

(Seto '09; Pshirkov et al. '10; van Haasteren & Levin '10)

- $z \sim 0.1$, $M = 10^8 M_{\odot}$ mergers may be possibly detectable with 2σ constrains (van Haasteren & Levin '10) ($M = 10^{10} M_{\odot}$ will be detectable throughout the universe!)
- But the rates are very low: 0.1 0.01 detections in 10 yrs
- A GW memory with amplitude $h \sim 10^{-15}$ will likely become detectable (Madison et al. '14) one in thousand years or every other year!

Either scenario will teach us something important about the population of these sources!



Thank you!