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Two element interferometer in practice
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Extended source

Consider a source at s, with some
small extent. Any point on the

source can be written as . do
s=s,+0 S0

Sy O = 0

T, = So:b

From van Cittert
Zernike theorem:

r(ty) = Re /I(S)eizflbds] s.b=s.b+o.b

_ Re e—iﬂ?;sﬂ.b /I(S)E—izira'.b dS]

= |V|cos(2nvT, + Py) where Y = |V]e PV




Extended source

Consider a source at s, with some
small extent. Any point on the

source can be written as - dQ
s=s,+0 %
Sy O = 0
T, = So:b
(1) = V| cos(2mvT, + Py) where Y = ‘V‘g_iq)v

/

Only contains the variation of the fringe as a function of earth’s rotation or

source rise-set. If an equal delay is introduced in the signals’ path we will

have:

r(tq) = |V|cos(®y) This instrumental delay has to change
continuously as T, changes: delay tracking



Extended source

Consider a source at s, with some
small extent. Any point on the

source can be written as - dQ
s=s,+0 %
Sy O = 0
T, = So:b
(1) = V| cos(2mvTy + Py) where Y = |V‘g_i‘1”'~’

/

Only contains the variation of the fringe as a function of earth’s rotation or
source rise-set. If an equal delay is introduced in the signals’ path we will
have:

'r(Tg) _ \V\ cos(é[)p) While T, isin RF the delay tracking is in baseband
and thus needs to be properly accounted.



Two element interferometer:

multiplying

S
Geometric delay 4
T,
7, = b sin(6)/c V) 20
MuI’TipIy
I
|
T(TQ) — |V‘ CDS(Q?TVTQ —}— fpv) where V — |V‘E—i¢’v



Two element interferometer
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Two element interferometer

Interferometer in practice including compensation for the geometric delay:
delay correction

Phase tracking
or delay tracking
centre
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Two element interferometer

Basic interferometer
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Interferometer in practice including
compensation for the geometric
delay: delay correction
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Two element

interferometer

(Vi(t)Va(t))

Vi(t) = vy cos2nv(t — 1)
Vo(t) = v9 cos 2wt

r(1y) = v1v9 COS 2TV/T,

We would like to express the
interferometer output in terms
of brightness integrated over
the sky.
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Two element

interferometer
b N
<V1 (i)VQ (t)) Amplifier
Moo 1
Vl (t) = 1 COS 27ry(t — Tg) 08 27 wlt-rg) | Multlipiier [ v con2r
: | |
Vo(t) = va cos 2wt iL_'itf_g:r_ Jr oot
Phase
r(14) = v1v2 €O8 2TVT, . " tracking
' ' center

We would like to express the i
interferometer output in terms
of brightness integrated over

the sky.

I(s) is the brightness in the
direction s at frequency v

W Hz!m? srt



Two element

interferometer
b .
<V1 (i)VQ (t)) Amplifier
= |
Vl (t) = 1 COS 27ry(t — Tg) v, 608 27 wlt-rg) ; \hﬁliligiier [ v con2r
! | |
Vo(t) = va cos 2wt iL_'itf_g:r_ Jr oot
Phase
’r(’rg) = VU9 COS 2Ty . i tracking

center

-
o

I(s) is the brightness in the oy
direction s at frequency v~ W Hz" m=sr

The total power received in a
bandwidth Av from a source
element dQ is

A(s) is the effective
A(S)I(s)AvdQ  collecting area of the
antennas in the direction s

E Assumed to be the same for both the antennas



Two element

interferometer

(Vi(t)Va(2))
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Vo(t) = v9 cos 2wt
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r(14) = v1v2 €O8 2TVT, .

-
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dr = A(s)I(s)Av dS2cos 2mvT,

S =8yt 0o

E Source is in the far field and is spatially incoherent. _



Two element

interferometer
b N
<V1 (t) V2 (t) ) Amplifier
| |
| | Voltage
Vl (t) — 'Ul COS 27TV(t — T[j) v, €08 27 vlt-14) ; MU'TP"ET ;vzcos&rvt
I
V2 (t) — rUQ COS Zﬂyt I Integrator Ii--4~--—Ccorr'eh::b:)r
Ignored the e Phase
iati rir,) )
() = vvpcendmr, oA
' center

-
o

dr = A(s)I(s)Av dS2cos 2mvT,

' 2rv b -
r = Ay/ A(s)I(s) cos 2P0
5!

C

Integral taken over the entire sphere -
however field of view, source structure
restrict this to a small region.



r = Ay/ A(s)I(s) cos 2mvb s ds?}
S

C

s, Is the phase tracking

27 b - :
ro = Af/cos( ikt SO)/A(J)I(J) COS 2mvb 749
S

c c
2nvb - 27 b -
_ /_\ysin( it SO)/A(J)I(J)Sin 2T a0
C S C



27 b - 27v'b -
r = Aycos( ™ SO)/A(O’)I(O’) cos X277 40
S

c c
2nvb - 2rv b -
_ Aysin( it SU)/A(O’)I(O’) sin —— "7 40
C IS C

Introducing visibility:

V = V]V = / A(J)I(J)e_gﬂyb' 7/¢ d0)
S




27 b - 27v'b -
r = Aycos( ™ SO)/A(O’)I(O’) cos X277 40
S

C C
2rv b - 2tv b -
— Avsin ( it SO) / A(o)I(o)sin 27 a0
C IS C
Introducing visibility:
V = V]V = / A(o)I(o)e 2mvbalc g0
S
./4(0') = A(O’) /Ag Normalized antenna reception pattern. A is the

reception pattern at the beam centre
Writing real and imaginary parts separately gives:

I



27 b - 27v'b -
r = Aycos( ™ SO)/A(O’)I(O’) cos X277 40
S

C C
2rv b - 2rv b -
— Avsin ( it SO) / A(o)I(o)sin 27 a0
C IS C
A(O’) = A(Q')/Ag Normalized antenna reception pattern.

V = V]V = / A(J)I(J)e_gﬂyb' 7/¢ d0)
S

2mv b -
AU|V|COS (;51; = / A(O’)I(O’) COS i o ds) Real
S C
: . 2tvb-o _
AU|V| sin gy = / A(O')I(O') S1n ds? Imaginary
S C



27 b - 27v'b -
r = Aycos( ™ SO)/A(O’)I(O’) cos X277 40
S

C C
2rv b - 2rv b -
— Avsin ( it SO) / A(o)I(o)sin 27 a0
C IS C
A(O’) = A(Q')/Ag Normalized antenna reception pattern.

V = V]V = / A(J)I(J)e_gﬂyb' 7/¢ d0)
S

2mv b -
AU|V|COS (;51; = / A(O’)I(O’) COS i o ds) Real
S C
: . 2tvb-o _
AU|V| sin gy = / A(O')I(O') S1n ds? Imaginary
S C



r

Alo)

2nvb - o

= Avcos (Zﬂyb'so)/SA(or)I(a) COS

C

C

27vb - 27v b -
_ Aysin( it SU)/A(O’)I(O’) sin —— -7
S

C

— A(-?)/Ao

V = V]V = / A(o)I(o)e 2mvbalc g0
S

2rv b -
T = AUAV|V| COS ( WUC X ¢If)

C

ds

ds?



: I7b -
r = Avcos (ijb SO)/A(O’)I(O’) cos X277 40
S

c c
2nv b - 2nv b -
_ Aysin( m SU)/A(O’)I(O’) sin 72" 7 40
C IS C

Alo) = A(o) /Ao

V=V

ei¢v — / A(J)I(JJG_QW?:U'} o/c A0
S

Amplitude and phase of
the fringe is measured

27 b - s and then amplitude
r = AgAv|V|cos ( — ¢y | and phase of V are
C derived after
calibration. Source

brightness then derived
by inversion of V.




9 : :
r = Aycos( b SO)/A(O’)I(O’)COS 2mvb T a9
S

C C

27vb - 27v b -
_ Aysin( it SU)/A(O’)I(O’) sin —— "7 40
S

Alo) = Ala) /Ay

V=V

ei¢v — / A(J)I(JJG_QW?:U'} o/c A0
S

2nv b -
T = AUAV|V| COS ( il >0 — Qﬁf) V needs to be
C

measured at
sufficiently wide
range of vb-o/c



Effect of bandwidth

2nv b -
r = AgAv|V|cos ( 'm»'c 0 (;Sv)

Response in an infinitesimal bandwidth dv

dr = Ay|V|cos (2mvTy — ¢v) dv




Effect of bandwidth

2nv b -
r = AgAv|V|cos ( 'm»'c 0 (;Sv)

Response in an infinitesimal bandwidth dv

dr = Ay|V|cos (2mvTy — ¢v) dv

Amplifier
Response

. F
Y, requency




Effect of bandwidth

271 b - Amplifier
r = AgAv|V|cos ( el (ﬁv) Response
c

Response in an infinitesimal bandwidth dv

dr = Ay|V|cos (2mvTy — ¢v) dv

vo+Av /2
r = A0|V| COS (271'127'9 — (;51;) dv
vo—Av/2

i
Yy Frequency




Effect of bandwidth

271 b - Amplifier

r = AgAv|V|cos ( Al (ﬁv) Response Av

C —
Response in an infinitesimal bandwidth dv |

dr = Ay|V|cos (2rvTy — ¢y ) dv ;,0 Frequency
vo+Av /2
r = A0|V| COS (271'127'9 — (;51;) dv
vo—Av/2

Work this out.

sin(a+b) = sin(a) cos(b) + cos(a) sin(b)



Effect of bandwidth

271 b - Amplifier
r = AgAv|V|cos ( Al (ﬁv) Response Av
C _—
Response in an infinitesimal bandwidth dv |
dr = Ay|V|cos (2rvTy — ¢y ) dv ;,0 Frequency
vo+Av /2
r = A0|V| COS (271'127'9 — (;51;) dv
vo—Av/2
sin TAvT
= Ag|V|Av L cos (2myTy — dv)
TAVT,

E—



Effect of bandwidth

Modifies the fringe

Amplifier
Res?;onse A amplitude - maximum only
LY when geometric delay is
zero.

i
Y, Frequency

sin TAVT
I cos (2T — Pv)

= AyVIA
: olV|Av TAvT,

Instructive to calculate at what angular offset the fringe amplitude fall for

e. 9. to 1% of its maximum. Use of the following approximation:
. 2
T AvT,| < 1 sin T AvT, (rAvTy)

e
L

TAvT, 6




Delay tracking and frequency

conversion

The geometric delay
needs to be
compensated in order
to observe a source
from rise to set.

Yrr YR
K Local | Phase Mixer
QOscillator Shifter
] Frequenpy After Mixer V. ¢
RF converted to IF in a Upper Sideband (Vpe -1, 4] Lo L0 .
mixer and in one of Lower Sideband (v, o=V C"mggj‘;;’t'"g T
the signals a delay to
compensate the |
geometric delay is T e
introduced. '

Low noise amplifier - not shown
here but is present before the
mixer in low frequency systems.




Delay tracking and frequency

conversion

The geometric delay
needs to be
compensated in order
to observe a source
from rise to set.

Yrr YR
K Local | Phase Mixer
QOscillator Shifter
] Frequenpy After Mixer V. ¢
RF converted to IF in a Upper Sideband (Vpe -1, 4] Lo L0 .
mixer and in one of Lower Sideband (v, o=V C"mggj‘;;’t'"g T
the signals a delay to
compensate the |
geometric delay is T e
introduced. '

Low noise amplifier - not shown
here but is present before the
mixer in low frequency systems.




Delay tracking and frequency

conversion

VRF = VL0 £ VIF

Upper side band and lower side
band.

Both can be processed further
(double sideband system) or using
filters only one may be taken -
called a single sideband system.

We need to see the phase
changes before reaching the
input of the correlator.

Response of
Receiving System

Lower  Upper

.‘.ﬂ‘_ﬂ Sideband Sideband
| ] ] |
VIF, Yo Frequency

Local Phase Mixer
>< Oscillator [ | Shifter

Frequency After Mixer v
Upper Sideband {¥/pe -¥ ] Lo $Lo .
Lower Sideband (v 4~ ¥p¢) ComgeTsatlng -

elay 1

Correlator
Vi Vi

!




Delay tracking and frequency

conversion

VRF = VLO T UT 1
For USB (single sideband
system): Y y
o1 = 2mvRppTy = 27(vL0 + MF) Ty SQp! oniiher [ Shese
it otrie) I YO
(;52 _ 27[']'/1];"}"3 _I_ ¢LO Lower Sideband {1 4= Vpe) Beluy 9 T,
' ™ Correlator =
!
Instrumental s the phase difference LO provides a
delay that is between the LO signal at the single frequency
given to two mixers but the RF and IF
compensate have a bandwidth;
for the Two sidebands
geometric
delay



Delay tracking and frequency

conversion
VR,F — ]/,]—_JO :|: D'_[F 1 Local Phase e Mixer 2
Oscillator | | Shifter (:?;
FrequenFy After Mixer VLE; ¢L°
For USB: e Sideband ((:f;-vy,::)] Compensating | -
(;52 - QWVIF Ti + (rbLO r = A |V|Ar/Sin TAVT, cos (2w Ty — Pv)

TAvT,

Obtain the response by replacing the argument of cosine function with

¢$1 — ¢o —@y and integrating over IF from vir, — Av/2 to v, + Av/2

vo+Av /2

Recall r = AV cos (2mvTy — @y ) dv
vo—Av/2



Delay tracking and frequency

conversion
VRF p— ]/’]'_JO :|: ]/’_[F 1 ‘ OLg)|c|aic _,Sl’hh_(;:e &Mxer 2
. Uoper Sieband Wiy, o b .
FOI" USB. Lower Sideband (v 4= Vpe! Comg:rlmsgtmg T
Correlator
1 = 2mvRrTy = 27 (VLo + UF) Ty T
P2 = 2muET + Pro ro= AVIAET T o (o, g
g

Obtain the response by replacing the argument of cosine function wit

¢$1 — ¢o —@y and integrating over IF from vir, — Av/2 to v, + Av/2

sin TAVAT
TAVAT

AT =71, —T; Tracking error of the compensating delay
q 1

ro = AgAv|V]| cos| 2w (1,0Tg + VT, AT) — ¢y — 10|



Delay tracking and frequency

conversion
— Response of
VRF VLO + VIr Receiving System

A Lower  Upper

For LSB -—’-’- Sideband Sideband
;I,;IFG | Llfl_o | Frequency

$1 = —2w(vLo — VIF)Ty

¢o = 2mvET; — ¢LO

sin TAVAT
T = AUAy|V| COS[ZW(VLOTH — VIFDAT) — ¢y — ¢5LO}
TAVAT
AT = Tg — Ti Tracking error of the compensating delay



Delay tracking and frequency

conversion
— Response of
VRF VLO + VIr Receiving System
. A Lower  Upper
For a double sideband =2 Sideband Sideband
system: |
| ] |
VIF, Yo Frequency
ru = AtV coslan(unomy + o AT) — by — dro] = AgAu]V| Si‘;gﬁ;f'r cos[2m(vroT, — i AT) — by — drol
rqg = Ty 1+ 7y
sin(mAvAT
= 2AvA|V]| ( ) cos(2mL,0Ty — ¢v — dro) cos(2mur, AT)

TAVAT

AT = Tg — Ti Tracking error of the compensating delay



Fringe rotation/stopping

sin tTAvAT
Ty = AOAL’|V| TI-AL;AT COS[2W(VLOT9 + L”IFOAT) o f,bV T QSLO]

If the term (271.07g — ¢1.0) can be kept constant then the

output will vary with changes in V and slow drifts in the
instrument.

The control of LO phase shift is referred to as fringe stopping or
fringe rotation.

The phase shifter allows to have this control :
and thus is introduced in the system. o [ 5o
Yo b0

Frequency After Mixer
Upper Sideband (Vpe-¥ !
Lower Sideband (v q=Vge)







Complex correlator: briefly

To measure the complex fringe both the real and
imaginary components need to be measured.

The imaginary part is just a /2 phase shifted
copy of the same.




Complex correlator: briefly

To measure the complex fringe both the real and
imaginary components need to be measured.
The imaginary part is just a /2 phase shifted

copy of the same.

. (Cosine)
For each antenna pair a second Correlator
correlator with the shift is added in ,[v

one of the inputs. Quadrature Re[V]

. k
This is called complex correlator. Network _
We will come to further details Introduces c (Si{\et)
when we will discuss correlators. the phase orrelator
shift | l
Im[V]




Coordinate systems

Baseline
orientation;
Track in the
uv-plane.




Coordinate systems

W points towards the direction
of interest - phase centre.

U towards East

V towards North

All measured in wavelength of
the center of the RF.

L, m are direction

cosines measured
with respect to the
u,V.

Correlator

'




vb-s

= ul+vm+ wn

C
vb - S0
= w,
¢
JQ — dl dm : cﬁc‘im |
T V112 - m?

0o o0 . : - ‘
V(u,v,w) = / / A(l,‘m)f(l,m)E_Qm[querw(m_])] V1 dllim m?
—oc J —oo B -

/

Integrand taken as zero when  [?4+m? > 1

We have been through the conditions under which this is a 2-D Fourier
transform.



Antenna spacings and u,v,w

Coordinate system for baseline

390 parameters:
z X - direction of the meridian at the
celestial equator
h=0, §=0 Y - towards East
X Z- toward the North celestial pole
h=-6" 8:0 L., L, and L, are coordinate differences for
Y the baseline, then
U 1 sin HU COS Hg 0 LX
v = — | —sindgcosHy sindgsinHy cosdy Ly
w cosdpcos Hy —cosogsinHy sindyg Ly

H, and o, are the hour angle and the declination of the phase reference
position.



u 1 sin H cos Hy 0
v =3 | - sindgcos Hy sindgsinHg  cos dy
w cosogcos Hy —cosdgsin Hy sindg

What is the locus of a track in the uv-plane ?
Eliminating H,from the equations for u and v:

I (Lz /) cosdy : _ L5 + LY
Sillé‘g )\2

V(_ua _U) =V (’Lb, !U)

=~
N
< I
|
i
|
|
|
o

L,cos 8,

o

o — — =
«

~
\



Sampling in the uv-plane

Visibilities are sampled: the footprint in the uv-
plane - uv-coverage is the sampling function.

For a point source at the phase centre the
visibility is a constant as a function of u and v.

The FT of the sampling function is then the

response to a point source - the synthesized
beam.

*

l

i

|

l

|
(S

L,cos 8,

o

o — — =
«

~
\




Coordinate system

sin Hy
— sin dy cos H

cos 0g cos Hy

cos Hy
sin 0y sin Hy
— cos 0y sin Hy

0
cos 0y
sin 50

What is the locus of a track in the uv-plane ?
Eliminating H,from the equations for u and v:

u2+(

V(_ua _U) =V (’Lb, !U)

v—(Lyz/\) 00350)2 B L5 + LY

sin {50

)

A?

Lx
Ly
Ly

)

-

-




Sampling in the uv-plane

—(Ly/N coséo\> L%+ L2 Li+Ly
'U»Q + v ( /j/ ) L — A 9 Y :,_-tﬁ;
S111 (50 A ) :
Visibilities are sampled: the footprint in the uv- K_T
plane - uv-coverage is the sampling function. L,co8 3,
D

For a point source at the phase centre the 1 y
visibility is a constant as a function of u and v.
The FT of the sampling function is then the
response to a point source - the synthesized ./
beam. |

The sampling in the uv-plane decides the shape
of the synthesized beam.




Coordinate system

u sin Hy cos Hy 0 Ly T2
v —sindgcos Hy  sindgsinHy  cos dy Ly :L,.lé '
w cosogcos Hy —cosdgsin Hy sindg Ly *::

7 H

What is the locus of a track in the uv-plane ?

Eliminating H,from the equations for u and v: L::CD: %
2 2 2 * ”
2 v — (Lyz /) cos do L5 + Ly
u” + , = 5
S111 (5‘0 A

.

V(_ua _U) =V (’Lb, !U)




Effect of bandwidth

Amplifier
Response ;
ALy 7, = b sin(6)/c
I
Yo Frequency
 Bandwidth leads to a
modulation of the fringe
vo+Av /2 with a sinc function.
r = Ag|V| cos (2mvTy — ¢y) dv * Introduction of delay
vo—Av/2 tracking to remove this
effect: however it is only
valid for the delay
A :
_ A0|V|AVSH]W VT, cos (2717, — ) tracking centre.
TAVT,



Bandwidth smearing

The bandwidth over which the signal Imﬁg‘:{;@:w
that is delay tracked only at the

Av
central frequency is averaged and
this lead to blurring in the image.
‘ F
u,.v, for the central frequency and u and % reaneney

v for another frequency.

Ly gy
(uﬂavﬂ) — ( u, ’U)
[ |4

(a)

V(u,v) = I(l,m)

Similarity theorem of FT

2
v (@u, y_%) _ (1) 7 (1;3 zm)
1% 174 Ly vy )




Bandwidth smearing

The bandwidth over which the signal I“;;Li,"o"n"ggte’
that is delay tracked only at the

central frequency is averaged and
this lead to blurring in the image.

Av

u,v, for the central frequency and u and
v for another frequency.

U 1 174 2 v 174 "
V (—Ou, —O’U) = (—) 1 (—l, —m)
v 1% 1y Vg

Range of variation in the coordinates

/ 11,0 Frequency
v

(L|m1)
e

Nty T2
R AL

0

!

decided by v/v,

Introduces a radial smearing proportional to
their distance from the tracking centre.

(b)



Bandwidth smearing

The bandwidth over which the signal I“;;Li:'g’n";:te’
that is delay tracked only at the

central frequency is averaged and
this lead to blurring in the image.

Av

u,v, for the central frequency and u and
v for another frequency.

2
V (y—ou, y—ov) = (i) 1 (il, im)
v 1% 1y Vg

Range of variation in the coordinates

/ 1‘,0 Frequency

(L|m1)
e

Dy [T,
R AL

0

!

decided by v/v,

Introduces a radial smearing proportional to
their distance from the tracking centre.

(b)

Will become significant when it becomes of the order of the synthesized beam.

E Multi-channel systems
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