
Astronomical Techniques II : Lecture 10

Ruta Kale

● Imaging

Low Frequency Radio Astronomy (Chp. 12)
http://www.ncra.tifr.res.in/ncra/gmrt/gmrt-users/low-frequency-radio-astronomy
Synthesis imaging in radio astronomy II, Chp 7
For correlators:
● Talk by Adam Deller 

https://nmt.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=42804ec9-3b6c-4b40-8978
-a920010eb3fa

http://www.ncra.tifr.res.in/ncra/gmrt/gmrt-users/low-frequency-radio-astronomy
https://nmt.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=42804ec9-3b6c-4b40-8978-a920010eb3fa
https://nmt.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=42804ec9-3b6c-4b40-8978-a920010eb3fa
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Correlator  
examples

GMRT, ALMA have an FX correlator.

VLA, IRAM have an XF correlator

IRAM: Institut de Radio Astronomie
 Millimetrique
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Imaging

2-D relationship holds while:

Observations are confined to a small region of the sky.
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Imaging

Primary beam
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Imaging
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Imaging

Discrete measurements:
M depends on the number of 
antennas in an array
For an array of 30 antennas 
like the GMRT, M ?
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Imaging

Image Visibilities

“Dirty” image Sampling 
function

Observed visibilities



8

Imaging

Sampling Visibilities (complex numbers)
Only amp. shown here
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Imaging

Image Sampling Visibilities (complex numbers)
Only amp. shown here
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Imaging

“Dirty” image Sampling Observed visibilities (complex 
numbers) Only amp. Shown.
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Imaging

Direct Fourier Transform and Fast Fourier Transform : two methods of imaging
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Direct Vs Discrete Fourier Transform

Due to computational advantages fast algorithms to find the Discrete 
Fourier Transform (DFT) are most commonly used in radio astronomy 
(algorith for DFT: Fast Fourier Transform).

Application of FFTs requires bringing data to regular grid and then 
performs the transform.

Only in special cases where number of antenna elements are few, the 
“direct Fourier Transform” is used.
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Imaging

Direct Fourier Transform and Fast Fourier Transform : two methods of imaging
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Imaging

Direct Fourier Transform and FFT : two methods of imaging

Direct Fourier Transform:

To be evaluated at every point of a NxN grid. 

Number of multiplications needed to evaluate are ~2MN2 

M and N are of the same order and thus the number of multiplications 
needed are ~N4
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Imaging

Direct Fourier Transform and FFT : two methods of imaging

Direct Fourier Transform:

Fast Fourier Transform: interpolation of the data onto a regular grid and 
then apply FFT algorithm.

The interpolation of data onto a grid is referred to as “gridding”.
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Fast Fourier Transform

Sampling
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Fast Fourier Transform

Requires the data to be on a regular grid.

Gridding
To bring the data to a regular grid 
required ~ N operations.

Further the FFT algorithms only 
require ~ N2 log2N  operations.
(E. g. Cooley-Tukey algorithm)

Compare this with N4 for the DFT 
case

In most common situations, FFTs are 
used.
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Sampling and the point source response 
or the beam

Sampling function: 

Sampled visibilities:
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Sampling and the point source response 
or the beam

Sampling function: 

Sampled visibilities:

→ 
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Sampling and the point source response 
or the beam

FT of a product of functions, is the convolution 
of their FTs,

Ref. FT text book 
e. g. Bracewell
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Sampling and the point source response 
or the beam

FT of a product of functions, is the convolution 
of their FTs,

* symbol denotes convolution

Ref. FT text book 
e. g. Bracewell
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Sampling and the point source response 
or the beam

For a point source of unit flux 
density, located at l0, m0

Assuming there is no 
other noise

FT of this ?
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Sampling and the point source response 
or the beam

For a point source of unit flux 
density, located at l0, m0

Assuming there is no 
other noise

FT of this will be a delta function.
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Sampling and the point source response 
or the beam

* symbol denotes convolution

For a point source of unit flux 
density, located at l0, m0

Assuming there is no 
other noise

FT of this will be a delta function.
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Sampling and the point source response 
or the beam

* symbol denotes convolution

For a point source of unit flux 
density, located at l0, m0

Assuming there is no 
other noise

FT of this will be a delta function.

=
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Sampling and the point source response 
or the beam

* symbol denotes convolution

For a point source of unit flux 
density, located at l0, m0

Assuming there is no 
other noise

FT of this will be a delta function.

=

Synthesized beam:
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Sampling and the point source response 
or the beam

* symbol denotes convolution

For a point source of unit flux 
density, located at l0, m0

Assuming there is no 
other noise

FT of this will be a delta function.

= Synthesized beam:

Point source response of the 
array:
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Synthesized beam

FT
→ 
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Synthesized beam

Desirable characteristics: Low and uniform sidelobes; high resolution

No unique approach to get all of this. Choice according to the science 
requirement.

FT
→ 
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Weighting: control the shape of the 
beam

Introduce a weighted sampling distribution:



31

Weighting: control the shape of the 
beam

Tk  = tapering function
Dk = density weighting
Rk = reliability weight

Introduce a weighted sampling distribution:
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Weighting: control the shape of the 
beam

Tk  = tapering function
Dk = density weighting
Rk = reliability weight

Introduce a weighted sampling distribution:

Weighted visibilities
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Weighting: control the shape of the 
beam

Tk  = tapering function
Dk = density weighting
Rk = reliability weight

Briggs 1995 
(PhD thesis: 
detailed 
treatment of 
weighting of 
visibilities)

If the sampling were a smooth function like a Gaussian 
we would have no sidelobes.
However it is like a bunch of delta functions – often with 
large gaps in between.

In an array: typically data points are in the inner region of 
the uv-plane and are sparse outside – gives rise to more 
weight to shorter spacings.
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Weighting: control the shape of the 
beam

Tk  = tapering function
Dk = density weighting
Rk = reliability weight

Briggs 1995 
(PhD thesis: 
detailed 
treatment of 
weighting of 
visibilities)

Tapering weights are used to downweight the data at the 
outer edge.
Density weights are used to lessen the effect of non-
uniform density of sampling in the uv-plane.

The weights are factored into components arbitrarily - 
only for convenience.
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Weighting: control the shape of the 
beam

Tk  = tapering function, separable into u and v dependent parts.

Tk  = tapering function
Dk = density weighting
Rk = reliability weight

A Gaussian taper, for 
example:
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Tapering

The synthesized beam width will change depending on the choice of 
the taper.
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Tapering example
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Density weighting

Uniform weights

Natural weights

Ns(k) is the number of points within a 
symmetric region in (u,v) of width s 
centered on kth point.

Ns is the number of points within a grid cell.
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Density weighting

Uniform weights

Natural weights

Robust weighting: hybrid form of weighting: uses minimisation of 
summed sidelobe power and thermal noise.

Ns(k) is the number of points within a 
symmetric region in (u,v) of width s 
centered on kth point.
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Density weights example
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Gridding the visibilities

Motivated by the fact that we want to 
take full advantage of the FFT 
algorithms.

We want the data on a “grid” that is 
uniformly spaced with a power of two 
points on each side.

Interpolation procedure needed to 
bring the data onto a grid.
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Gridding the visibilities

Resampling

Gridding by convolution: convolve the 
weighted sampled visibility with some 
suitable function and then sample this 
function on the desired grid.
Value assigned at each grid point will be 
an average of the local values.
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Gridding the visibilities

Gridding by convolution: convolve the 
weighted sampled visibility with some 
suitable function and then sample this 
function on the desired grid.
Value assigned at each grid point will be 
an average of the local values.

Visibilities are a linear combination 
of M delta functions:

uc, vc is a grid point
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Gridding the visibilities

Gridding by convolution: convolve the 
weighted sampled visibility with some 
suitable function and then sample this 
function on the desired grid.
Value assigned at each grid point will be 
an average of the local values.

Resampled visibility:

Normalization of C in connected to the weighting scheme.
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Gridding the visibilities

Gridding by convolution: convolve the 
weighted sampled visibility with some 
suitable function and then sample this 
function on the desired grid.
Value assigned at each grid point will be 
an average of the local values.

Normalization of C in connected to the 
weighting scheme.

R is the “bed-of-nails” function or the sha 
Function: a train of delta functions

Can be evaluated using FFT
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Gridding the visibilities

Gridding by convolution: convolve the 
weighted sampled visibility with some 
suitable function and then sample this 
function on the desired grid.
Value assigned at each grid point will be 
an average of the local values.

The “dirty image” can be given by
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● Resampling makes dirty image a periodic function of l and m of period 
1/u and 1/v.

● Aliasing is introduced due to convolution with the scaled sha function.

The “dirty image” can be given by
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Graphical representation

SIRA, Fig. 7-5

Model 
source: 
symmetric

Model Visibilities: 
Real and even 
due to symmetry

Sampling: 
central hole, 
falling density 
towards the 
outskirts

Synthesized 
beam

Sampled 
visibilities

Dirty image 
if a direct FT 
is computed
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Sampled 
visibilities

Convolution 
function

Convolved 
sampled 
visibilities

Effect in the 
image domain

FT of the 
convolution 
function
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Resampling

Resampled 
visibilityDirty image: 

aliasing 
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Divide by 
the FT of 
the 
convolution 
function

This image is far from satisfactory 
representation of the actual distribution: can 
do better than this by deconvolution.
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Choice of the gridding convolution 
function

Desired choices to avoid aliasing:

a) image is large enough to include any sources at the edges.

b) avoid under sampling

c) use a gridding convolution function whose Fourier transform 
drops off rapidly outside the image.

C is chosen to be real and even. C is separable C(u)C(v).

1. a pillbox function

2. truncated exponential

3. a truncated sinc function

4. an exponential multiplied by a truncated sinc

5. a truncated spheroidal
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