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Cosmology
▶ The universe is homogeneous and isotropic at large scales.
▶ Hubble’s law:

v = H0r
Recent measurements: H0 ∼ 70 km s−1 Mpc−1.
Leads to the concept of an expanding universe.
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Cosmology: basics
▶ The large-scale nature of the universe must be described by general theory

of relativity.
▶ Assume the Universe to be homogeneous and isotropic, then it is described

by the FRW metric

ds2 = dt2 − a2(t)
[

dr2

1 − κr2 + r2dΩ2
]

▶ Friedmann equations

H2(a) ≡
(

ȧ
a

)2
=

8πG
3

∑
i
ρi(a)−

κ

a2

and
ä
a = −4πG

∑
i
[ρi(a) + 3pi(a)]

Current observational data supports κ = 0.
▶ Note that for normal matter ρi > 0, pi ≥ 0, so ä < 0. The Universe should be

decelerating.
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Accelerating universe

SN-Ia data from various experimental probes

Padmanabhan & TRC (2003); updated 2013
Data shows that the Universe is accelerating from a ≈ 0.6 onwards.
Requires ρ+ 3p < 0 =⇒ p < 0. Dark Energy!
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Dark matter
▶ Dark Energy ≈ 70%.

▶ Radiation (photons, neutrino) negligible.
▶ Normal non-relativistic gravitating matter ≈ 30%.
▶ However, only ∼ 4 − 5% seen in stars, galaxies, intergalactic gas.
▶ So, ∼ 25% is Dark Matter!
▶ Does not emit or interact with light, but otherwise like normal matter.

Yet to be detected in the laboratory experiments.
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Constituents of the Universe

Mostly hydrogen (75%)
and helium (25%)
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Big bang cosmology
If the Universe is expanding now, its size must be smaller in the past. If we go
back enough in time, the Universe must be contained within a point. This
paradigm is called the Hot Big Bang model of the Universe.
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Hot universe
▶ Imagine a set of particles (gas) in a box, whose volume is compressed

▶ The (kinetic) energy of the particles would increase =⇒ rise in temperature

T =
1

3kB
m⟨v2⟩

▶ Universe was hotter at earlier times

T ≈ 2 × 106 K
(

t
year

)−1/2
≈ 1010 K

(
t

sec

)−1/2
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Big bang timeline

▶ t < 10−43 secs: Physics not understood, realm of quantum gravity
▶ t ≈ 0.0001 secs: Baryogenesis. Small difference between the number of

anti-particles and particles =⇒ Antiparticles annihilate with particles leaving
only matter. Poorly understood.

▶ t ≈ 3 mins: Big Bang Nucleosynthesis
▶ t ≈ 400, 000 years: Formation of neutral atoms
▶ t > 108 years: Stars/Galaxies form
▶ Present age of the Universe: t ≈ 1010 years
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Formation of atoms

▶ At t ≈ 400,000 years, energies are small enough so that electrons and
protons can bind with each other.

▶ Photons (radiation) scattered off free electrons before atom formation. They
travel freely afterwards.

▶ We detect this radiation as Cosmic Microwave Background.
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Spectrum of the CMBR
Before formation of neutral atoms, photons were getting scattered by electrons,
thus coming to a local thermodynamic equilibrium =⇒ Black-body spectrum.
Once atoms form, photons simply free-stream to us.

Spectrum measured by COBE (1992).
Competing theories of big bang fail to explain this spectrum
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Last scattering surface
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Inhomogeneities in the CMBR
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Planck satellite

Inhomogeneities ∼ 10−5.
Seeds of Galaxies and all the structures we see today.
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Gravitational instability
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Growth of structures
Inhomogeneities grow via gravitational instability, probed by computer simulations
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Galaxy distribution
Galaxy surveys vs Millennium simulations
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Standard model of cosmology

Precision cosmology!

Unsolved issues include: nature of dark matter and dark energy and H0-tension.

18



Structures: theory and observations
Theoretical understanding

time redshift
? Origin (?)

4 × 105 y Small fluctuations (initial conditions)∼ 1100

∼ 1010 y Large-scale structure0

Gravitational instability
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Structures: theory and observations
Theoretical understanding

time redshift
? Origin (?)

4 × 105 y Small fluctuations (initial conditions)∼ 1100

∼ 1010 y Large-scale structure0

Gravitational instability

Observational probes

CMBR

Redshift surveys
∼ 109 y ∼ 6

∼ 108 y First stars/galaxies∼ 15
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Search for the first stars
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Luminosity
Oesch et al (2018)
push to fainter luminosities and higher redshifts with JWST (2021) and the ELTs
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Probing the “final frontier”

Probes planned for detecting the first stars (cosmic dawn)

JWST TMT
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Brief history of neutral hydrogen
Universe expanding and coolingBig Bang Present day

Figure courtesy: http://www.nature.com/nature/journal/v468/n7320/fig−tab/nature09527−F1.html
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Brief history of neutral hydrogen
Universe expanding and coolingBig Bang Present day

Last scattering epoch
First hydrogen atoms form

Figure courtesy: http://www.nature.com/nature/journal/v468/n7320/fig−tab/nature09527−F1.html
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Brief history of neutral hydrogen
Universe expanding and coolingBig Bang Present day

Dark ages

Figure courtesy: http://www.nature.com/nature/journal/v468/n7320/fig−tab/nature09527−F1.html
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Brief history of neutral hydrogen
Universe expanding and coolingBig Bang Present day

First stars form

Figure courtesy: http://www.nature.com/nature/journal/v468/n7320/fig−tab/nature09527−F1.html
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Brief history of neutral hydrogen
Universe expanding and coolingBig Bang Present day

Reionization

Figure courtesy: http://www.nature.com/nature/journal/v468/n7320/fig−tab/nature09527−F1.html
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Brief history of neutral hydrogen
Universe expanding and coolingBig Bang Present day

Post-reionization

Figure courtesy: http://www.nature.com/nature/journal/v468/n7320/fig−tab/nature09527−F1.html
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Brief history of neutral hydrogen
Universe expanding and coolingBig Bang Present day

Dark ages
Strong probe of cosmology

Reionization
1. First stars
2. Cosmology

Post-reionization
1. Galaxy formation
2. Cosmology

Figure courtesy: http://www.nature.com/nature/journal/v468/n7320/fig−tab/nature09527−F1.html
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Brief history of neutral hydrogen
Universe expanding and coolingBig Bang Present day

Dark ages
Strong probe of cosmology

Reionization
1. First stars
2. Cosmology

Post-reionization
1. Galaxy formation
2. Cosmology

Phase transition
“Final frontier” of observational cosmology

Figure courtesy: http://www.nature.com/nature/journal/v468/n7320/fig−tab/nature09527−F1.html

22



Galaxies and neutral hydrogen
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Data constrained models

Constraints based on Planck data + quasar absorption line measurements at
z ∼ 6
reionization starts at z ∼ 12
Mitra, TRC & Ferrara (2015)

24



21 cm observations
▶ Hydrogen 1s ground state split by the interaction between the electron spin

and the nuclear spin.

|↑ ↑⟩1
√

2
[|↑ ↓⟩+ |↓ ↑⟩]

|↓ ↓⟩

1
√

2
[|↑ ↓⟩ − |↓ ↑⟩]

unperturbed

1s

triplet

singlet

ν = 1420 MHz, λ = 21 cm

Line transition =⇒ a transition originating at z will be observed at a frequency
νobs = 1420/(1 + z) MHz.

▶ It is a magnetic dipole transition, with transition probability
A21 = 2.85 × 10−15 s−1 =⇒ an atom in the upper level is expected to make a
downward transition once in 107 yr.
For Lyα transition, the corresponding coefficient is A21 ≈ 6 × 108 s−1.
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How to observe the 21 cm signal?

Figure from Zaroubi (2013)

n2
n1

= 3 e−Tspin/T21

CMBRHIResultant

z
ν =

1420
1 + z MHz ν = 1420 MHz

The signal: δIν ∝ ρHI

(
1 − TCMB

Tspin

)
∝ ρHI if Tspin ∼ Tgas ≫ TCMB
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Global 21 cm signature

δTb ∝ Ts − TCMB(z)
Ts

ρHI

T−1
s =

T−1
CMB + xcT−1

k + xαT−1
k

1 + xc + xα

Pritchard & Loeb (2012)
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Recent detection of the global 21 cm signal

Bowman et al (2018) 28



Consistent with standard calculations?

Bowman et al (2018)

Pritchard & Loeb (2012)

δTb = 0.023 K xHI

(
Ts − TCMB(z)

Ts

)
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21 cm maps
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Possible to observe using
radio-interferometric arrays

Ghara, TRC & Datta (2016)
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“Final frontier” using radio telescopes
GMRT

LOFAR

MWA PAPER
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Future telescopes

SKA-LOW HERA
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21 cm maps
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EoR 21 cm power spectra
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The SKA

▶ Square Kilometre Array: most ambitious radio astronomy project ever
attempted

▶ To be built in Australia and South Africa
▶ Phase I: target 2022. Main science goals include EoR
▶ India is a member of the SKA international collaboration (lead by

NCRA-TIFR). GMRT often provides useful test-bed for SKA
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Summary

▶ Studying the formation of the first stars is the “Final frontier” of observational
cosmology.

▶ Good progress in theoretical modelling, possible to construct models
consistent with all available data.

▶ Field driven by observational data – various observations will soon (?) settle
the long-standing question on when and how the first stars formed.

▶ Important to develop detailed analytical and numerical models to extract the
maximum information about the physical processes relevant for galaxy/star
formation and evolution out of the expected large and complex data sets.
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