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Noise and Temperature

1 P = kT∆ν

2 PN = kTsys∆νG

Tsys = Tbg + Tatm + Tspill + Tloss + Trec

Everything but the target source

3 Pa = kTa∆νG

Ta - contribution from the target source

4 Ta1 =
ηa1A1S

2k
= K1S

5 K =
ηaA

2k
K Jy−1 - Flux collecting ability of an antenna
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Sensitivity of a 2 element interferometer

1 V1(t) = S1(t) + n1(t)

2 V2(t) = S2(t) + n2(t)

3 Assumptions

1 Point source at phase centre
2 Appropriate delays and fringe stop
3 Gaussian white noise

4 Components of the correlated output

1 Constant (DC) - S1(t) S2(t) - the object of our measurement
2 zero mean, time varying output - unavoidable noise
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Sensitivity of a 2 element interferometer

1 Ratio of DC component to the RMS of the time varying
component

2 Derivation based on

1 Wiener-Khinchine theorem

3 ∆S =
1√

∆t ∆ν

√

S2 +
STsys

K
+

T 2
sys

2K 2

where K =
ηaA

2k
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Sensitivity of a 2 element interferometer

1 Weak source case S <<
Tsys

K

∆S =
1√

2∆t ∆ν

Tsys

K

2 Strong source case S >>
Tsys

K

∆S =
S√

∆t ∆ν
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Sensitivity of a 2 element complex correlator

1 Sm =
√

S2
R + S2

I

φm = tan−1 SI

SR
2 Noise distribution for Sm - Rice distribution

P(Sm) =
Sm

∆S2
I0

(

SmS

∆S2

)

e

−(S2
m + S2)

s∆S2

where I0 is the modified Bessels function of the first kind,
order zero, and S is the true amplitude.

3 Probability distribution for phase error φ − φm, where φ is the
true phase

P(φ − φm) =
1

2π
e

−S2

2 ∆S2
(

1 + G
√

πeG2
(1 + erfG

)

where G (θ) =
Scosθ√
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Probability distribution of measured amplitude and phase
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Sensitivity for a point source

1 ∆Im =

√
2kTsys

ηaηcA
√

NbaseNIF∆T∆ν

2 ηc =
Sensitivity of the correlator

Sensitivity of a perfect analog correlator

1 bit - 64%; 2 bit 3 level - 81%
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Sensitivity for an extended source

1 B(l , m) - Jy beam−1

2
I Ωs

∆Im
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Effect of the primary beam

1 Im(l , m) = I (l , m) P(l , m) + N(l , m)

2
Im(l , m)

P(l , m)
= I (l , m) +

N(l , m)

P(l , m)
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Deconvolution

1 V ′(u, v) =

∫ ∫

I (l , m)e−2πi(ul+vm)dl dm

2 Direct inversion not possible

3 Model with a finite number of parameters

4 Î (p∆l , q∆m)

5 V̂ (u, v) =
∑Nl

p=1

∑Nm

q=1 Î (p∆l , q∆m)e−2πi(pu∆l+qv∆m)
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1 Range of features which can be captured by the data

1 O(1/max(u, v))
2 O(1/min(u, v))

2 Choice of ∆l , ∆m and Nl , Nm, must allow these scales to be
represented

1 ∆l ≤ 1

2umax

; ∆m ≤ 1

2vmax

2 Nl∆l ≥ 1

umin

; Nm∆m ≥ 1

vmin

3 Degrees of Freedom - Nl × Nm
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1 V (ui , vi ) = V̂ (ui , vi ) + ǫ(ui , vi )

2 V (u, v) = W (u, v)
(

V̂ (u, v) + ǫ(u, v)
)

3 W (u, v) =
∑

i Wi δ(u − ui , v − vi )

4 ID
p,q =

∑

p′,q′ Bp−p′,q−q′ Îp′,q′ + Ep,q where

ID
p,q =

∑

i W (ui , vi ) Re
(

V (ui , vi )e
2πi (pui∆l + qvi∆m)

)

and

Bp,q =
∑

i W (ui , vi )Re
(

e2πi(pui∆l+1vi∆m)
)

13 / 19



Principal Solution and Invisible Distributions

1 If some spatial frequencies allowed in the model are not
present in the data, changing their amplitudes in the model
will have no effect on the fit to the data

2 Z - the invisible intensity distribution, then B⋆Z = 0

3 If I is a solution to the convolution eqn, I + αZ is also a
solution

4 The solution which has 0 amplitude at all unsampled spatial
frequencies - principal solution

5 The problem of imaging - principal solution + a plausible
invisible distribution
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The need for a-priori information

1 Limitations of the Principal solution

1 Changes with data available
2 Sidelobes of order 1-10%
3 Is it a point source or is it a source shaped like the dirty beam

2 A-priori information

1 Positivity (Stokes I must be positive)
2 Nature of sources (do not have sidelobes extending to infinity)
3 Information of the PSF
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The CLEAN Algorithm

1 Represent the sky as a collection of point sources in an
otherwise empty field of view

2 Iterative procedure to find the positions and strengths of these
point sources

3 Deconvolved image - Supersposition of point source convolved
with a CLEAN beam and the residual noise
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The Hogbom Clean

1 Find the location and the strength of the brightest point in ID

- Si at (li , mi ) and add it to the accumulated point source
model Îp,q.

2 ID −
(

BD(l + li , m + mi ) × Si × γ
)

, where
γ << 1, usually 0.1

3 Iterate till remaining peaks are below some user specified
threshold

4 Convolve Îp,q with a restoring beam - an idealised beam,
usually an elliptical Gaussian fit to the central part of the BD

5 Add the residuals to the restored image - CLEAN image
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The Clark Clean

1 CLEAN involves a lot of shifting, scaling and convolutions

2 Minor cycle

1 Choose a beam patch (include highest exterior sidelobes)
2 Select bright points from ID as before
3 Perform Hogbom clean using the beam patch and the selected

point sources

3 Major cycle

1 Point source model built up in the minor cycle is FFTed,
weighted and sampled appropriately and FFTed back to the
image domain. This is subtracted from the ID .

2 Errors introduced due to the use of the beam patch in the
minor cycles are corrected at the major cycle stage
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The Cotton-Schwab Clean

1 The major cycle is performed on ungridded visibilities

1 Avoids aliasing and gridding errors

1 Some miscellaneous comments about Clean

1 Use of clean boxes

2 No. of iterations vs loop gain (γ)
3 The problem of short spacings
4 The choice of restoring beam
5 Clean instabilities
6 Multi-resolution clean
7 Sources lying on pixel boundaries
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