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Abstract. We present radio observations of the magnetic chemically peculiar Bp
star HR Lup (HD 133880) at 647 and 277 MHz with the GMRT. At bothfrequencies
the source is not detected but we are able to determine upper limits to the emission.
The 647 MHz limits are particularly useful, with a 5σ value of 0.45 mJy. Also, no
large enhancements of the emission were seen. The non-detections, along with previ-
ously published higher frequency detections, provide evidence that an optically thick
gyrosynchrotron model is the correct mechanism for the radio emission of HR Lup.
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1. Introduction

Sources of stellar radio emission can be split by the presence of non-thermal emission. Ther-
mal emission is seen in massive stars (Wolf-Rayet, O- and early B-type stars) that have strong
radiatively driven stellar winds (Wright 1975). These windsare ionized and radiate via free-free
emission. A number of early type stars also show a non-thermal component and this is usually
due to shock-acceleration associated with colliding stellar winds in binary systems (De Becker
2007). Several types of lower mass stars also show detectable radio emission, often non-thermal
in nature. Examples include the Sun, RS CVn stars (Slee et al.2008), dMe stars (Osten et al.
2006), dwarf stars and brown dwarfs (Berger et al. 2006). This emission is usually associated
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with coronal emission and flare activity, is often time variable and also requires the presence of
magnetic fields.

Late B-type stars and early A-type stars have neither strongstellar winds nor substantial outer
convective zones and so were not expected to be strong radio emitters. Magnetic chemically
peculiar (MCP) stars have been known as radio emitters in thecentimetre range since the mid
1980s. MCP stars are a class of peculiar A and B stars (referred to as Ap or Bp stars) with
strong (kGauss) magnetic fields. The class is characterizedby large abundance anomalies in a
range of elements which suggested that the photospheres of these stars are highly stable (with the
turbulent motions stabilized by the magnetic field) allowing diffusion to take place. The origin of
the magnetic fields in these stars is still unclear, with possibilities including either a fossil-field
from the original collapse to form the star, or possible dynamo action either in the radiative zone
or at an earlier stage of evolution (Arlt 2008). Although sub-surface convection zones in massive
stars, associated with the iron opacity bump, could be associated with magnetic field generation,
this mechanism is thought to not work for the late B-type stars considered here (Cantiello 2011).

There is one MCP star that is of particular interest at radio wavelengths – CU Vir (A0p).
This nearby star has a period of 0.52 days and a strong magnetic field. From optical variability
timing, Pyper et al. (1998) reported on a peculiar change in the optical (and presumably rotational)
period. CU Vir also shows periodic, polarised outbursts as well as quiescent emission. The burst
emission has been attributed to electron cyclotron maser emission. The outbursts are seen over a
wide range of frequencies (see (Lo et al. 2012); (Trigilio etal. 2011); (Ravi et al. 2010); (Stevens
& George 2010) and references therein).

There have been a small number of radio observations of late Band early A-stars. Drake
et al. (1987) observed 34 sources detecting only 5 at 5 GHz with the Very Large Array (VLA).
They interpreted the observed radio emission as being due togyrosynchrotron emission from the
magnetosphere of the star due to a continuously injected population of mildly relativistic particles
that are trapped in the magnetosphere. Wilson et al. (1988) also using the VLA at 5 GHz surveyed
16 M dwarf stars detecting one source, Gliese 735. A more recent VLA survey of MCP stars at
5 GHz by Leone et al. (1994) extended this to cover 40 stars, ofwhich only 8 were detected.

MCP stars on average show moderate circular polarisation, with radio properties similar to
that of active cool stars such as RS CVns. They show periodic changes in the detected magnetic
field over the stellar rotation period (Borra & Landstreet 1980). The magnetic field topology of
this kind of star is generally taken as a magnetic dipole tilted with respect to the rotation axis
(Babcock 1949), though in the case of HR Lup the field is quadrupolar in nature (see below). In a
few cases, MCP stars possess an anisotropic stellar wind as aconsequence of the wind interaction
with the dipolar magnetic field (Shore et al. 1990). In about 25% of MCP stars non-thermal radio
emission is observed and the rate of detection seems to be correlated with the effective stellar
temperature (Linsky et al. 1992; Leone et al. 1994).

The radio emission is generally interpreted as gyrosynchrotron emission from mildly rela-
tivistic electrons. These electrons are accelerated in current sheets, formed when the gas flow
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brakes the magnetic field lines, close to the magnetic equator and the electrons propagate along
the magnetic field lines towards the inner magnetospheric regions (Havnes & Goertz 1984).

X-ray studies have found that MCP stars are weak X-ray emitters with a detection rate of just
over 10% (Drake et al. 1994). The X-ray emission of MCP stars does not correlate with other
stellar properties. Their radio properties also do not follow the Guedel-Benz scaling law as this
would imply X-ray luminosities as high as 1033 erg s−1 (Guedel & Benz 1993). The only X-ray
detections of MCP stars are not particularly bright (Lx > 1030.5 erg s−1; Drake et al. 2006).

In this paper we focus on low frequency observations of one specific object (HR Lup) which
may give some insights into the processes going on in the star.

2. HR Lup

HR Lup (HD 133880, HR 5624; RA: 15 08 12.124, Dec:−40 35 02.15) is a rapidly rotating
B-type chemically peculiar star of spectral type B8 Ivp.

The star is rapidly rotating (v sini ≈ 103 kms−1) and has a rotational period of 0.8777 days,
which is observed in optical photometry, magnetic field measurements and radio flux (Bailey et
al. 2012; Schmitt et al. 2005).

The inferred stellar parameters for HR Lup areM∗ = 3.2M⊙, R∗ = 2.01R⊙, Te f f = 13000 K
and age of 15.8 Myr (derived from the fact that it is a member ofthe Upper Cen Lup association;
Landstreet et al. 2007). HR Lup has a very strong magnetic field, typically 2.4 kG (Schmitt et al.
2005). This magnetic field varies from about 4 to+2 kG (Landstreet et al. 1990). Unlike most
MCP stars the magnetic field is not dipolar, but quadrupolar (and this has consequences for the
observed radio variability). The rotational and magnetic axes are misaligned (Bailey et al. 2012).

HR Lup is a photometric variable with variations on the orderof 0.15 mag in the U -
band, which is probably the result of the large magnetic fieldand surface abundance anomalies
(Waelkens 1985).

HR Lup is a known radio source, previously observed with the Australia Telescope Compact
Array (ATCA). At 5 GHz Lim et al. (1996) demonstrated that both the total intensity and circular
polarisation of the source varied significantly and coherently according to the known rotational
period. The total intensity varied from∼ 1 mJy to∼ 5 mJy with the degree of circular polarisa-
tion reaching up to 20%. They noted that the emission shows broad peaks (suggesting a dipole
contribution to the field) and narrower peaks at the predicted phases of a quadrupole contribution
to the magnetic field. At 8 GHz the source is seen to have a flux density of 4.08± 0.16 mJy
though no indication of any variability is presented (Drakeet al. 2006). Bailey et al. (2012) have
re-reduced the ATCA radio data of Lim et al. (1996) but there are no significant differences in
the reduced data.
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In this paper we present observations at 647 and 277 MHz with the intention of finding if
there is any lower frequency emission and help to find if thereis a cut-off frequency.

3. Observations and data reduction

The Giant Metrewave Radio Telescope (GMRT) is located near Pune, India and consists of thirty
45 m diameter radio dishes. The GMRT has a maximum and minimumbaseline of 25 km and
100 m, and has operating receivers at 150, 235, 325, 610 and 1400 MHz.

We observed HR Lup with the GMRT on 2009 December 5th and 7th simultaneously at both
647 and 277 MHz, implying only total intensity maps were constructed. At 647 MHz a bandwith
of 16 MHz was used and at 277 MHz a bandwith of 6 MHz was used (both observations used 128
channels). An integration time of 16 seconds was used. The total time on source was 4.67 hours
over the two nights. During the observations 27 antennas were used. The observations consisted
of flux density and bandpass calibration using 3C 286 at the start and end of the observations, and
phase calibration using VSOP J1501–3918 every 30 minutes.

Each spectral window was calibrated and imaged separately using the Common Astronomy
Software Applications package (CASA1). Any interference in the data was removed by manual
inspection. Several rounds of phase only self-calibrationwere completed on the target data.
During these iterations any visibility measurements that showed unusual phase excursions were
rejected. The final image used for analysis below was primarybeam corrected and has a central
rms of 90µJy at 647 MHz and 6 mJy at 277 MHz.

The source positions for the brighter sources were matched with that of the Sydney University
Molonglo Sky Survey (SUMSS) at 843 MHz (Mauch et al. 2003). Nosignificant source position
offset was found between the GMRT data and this survey.

4. Results and Discussion

At 647 MHz we do not detect the source. At the 5σ level this gives us an upper limit of the flux
density of 0.45 mJy. Also, at 277 MHz we do not detect the source. At the 5σ level this gives
us an upper limit of the flux of 30 mJy. The data were also cut into shorter time-scales (at 120
seconds and the scan length∼ 600s) and imaged. No significant time variation was seen at the
position of the source thus ruling out any bright bursts.

Bailey et al. (2012) have produced the most recent and accurate ephemeris for HR Lup,
combining several data sets to yield:

1http://casa.nrao.edu/
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JDmin = 2445472.000(10)+ 0.877476(9)· E, (1)

where zero phase corresponds to minimum photometric brightness and also the minimum of the
longitudinal magnetic field. With this ephemeris the principal radio maxima at GHz frequencies
occur at phaseφ = 0.0 and 0.5.

From this, we can determine the phase of our observations. The observations are on two sep-
arate days and they cover phases of 0.93–1.06 and 0.15–0.35 respectively. Thus the observations
cover at least one of the periods of radio maxima previously observed. Using the 3σ period errors
quoted by Bailey et al. (2012) we estimate an uncertainty in the phase for these observations of
around 0.1.

Since we compared our positions to that of SUMSS it is worth noting that no source is given
in their catalogue at the position of HR Lup, though investigation of the SUMSS mosaics indicates
that there is a possible enhancement with a peak of 4.5 mJy/beam at the optical position of HR
Lup. This source is below the detection threshold of 10 mJy/beam.

If indeed there is a source corresponding to 4.5 mJy/beam at 843 MHz then this would imply
an extremely steep cut-off between the 843 and 647 MHz observations (i.e.α ≥ 7, for S ν ∝ να,
which seems rather extreme). Though with no formal detection in the SUMMS maps this does
not discount the possibility that the cut-off frequency is not located somewhere between 647 MHz
and the previous detections at 5 GHz. If we discount the SUMSSpoint, then the implied limit on
the spectral index between 647 MHz and the previously reported 5 GHz points isα > 1. These
sources are possibly variable in time (although the ATCA observations show only a factor 2–3
variability across the rotational period) over longer time-scales.

The non-detection, particularly at 647 MHz, implies that the radio emission region intersect-
ing the line of sight has a finite extent which is consistent with the optically thick gyrosynchrotron
model of Linsky et al. (1992). The radio spectrum from this model will have a frequency (νpeak)
where the emission peaks, the location of which depends on the wind density/geometry and the
magnetic field properties. The radio spectrum then falls away on either side of this peak fre-
quency, and the spectral slope on either side of theνpeak with the electron energy spectrum. It
is likely thatνpeak lies somewhere between 647 MHz and 5 GHz, and observations with a much
broader bandwidth will be important to fully constrain the detailed shape of the emission.

5. Summary

In summary, we present non-detections of the MCP star, HR Lupwith the GMRT at 647 MHz
and 277 MHz. No significant time variation was seen at the position of the source thus ruling out
bright bursts, as seen in CU Vir, in this dataset. We considerthat these non-detections provide
evidence that the emission mechanism for this star is optically thick gyrosynchrotron emission.
We suspect that the peak emission frequency lies between 647MHz and 5 GHz. Follow-up ob-
servations at frequencies in this range would be particularly useful to constrain the spectral model
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Table 1. The GMRT observations of HR Lup in UT at 647/277 MHz. Given are the start and end times
of the observing and the range of phase covered by these observations, using the ephemeris of Bailey et al.
(2012).

Start Observing End Observing Phase range

04:35:10.9 05 Dec 2009 07:22:40.4 05 Dec 2009 0.93–1.06
03:23:28.3 07 Dec 2009 07:35:41.3 07 Dec 2009 0.15–0.35

and indeed provide constraints on the energy injection of electrons in the stellar magnetosphere.
Broad-band observations (covering both the GHz and sub-GHzregimes) are necessary to con-
strain the emission mechanisms in MCP stars and coverage of the entire rotational period are
necessary to detect the presence of short-lived intense bursts, which may well be a feature of the
radio emission from the strongly magnetic stars.
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