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Geodesic equation
▶ Let us consider the motion of particles moving along geodesics in the FLRW metric.
▶ Because of the presence of factors like Sk(χ), the standard Lagrangian method becomes quite complicated in this

case. There are easier ways to do this problem.
▶ Let us start with the conventional geodesic equation (λ being the affine parameter)

d2xi

dλ2
+ Γi

jk
dxj

dλ
dxk

dλ
= 0,

▶ Using the derivative ui = dxi/dλ
dui

dλ
+ Γi

jku
juk = 0 =⇒ ui;ku

k = 0.

▶ In terms of the covariant derivative of ui = gijuj, we have

ui;ku
k = (giju

j);ku
k = giju

j
;ku

k = 0.

▶ Let us expand this to obtain a different form of the geodesic equation

0 =
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ikuj

)
uk =

∂ui
∂xk

dxk

dλ
− Γj
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(
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l
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=
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dλ
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j
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luk =
dui
dλ

− 1

2

(
∂gil
∂xk

+
∂gkl
∂xi

− ∂gik
∂xl

)
uluk

=
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dλ

− 1

2

∂gkl
∂xi

uluk.
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Conserved quantities
▶ So, the geodesic equation to be used has the form

dui
dλ

=
1

2

∂gkl
∂xi

uluk,

which shows that if the metric is independent of a particular xi, then ui will be conserved along the geodesic.
▶ Now, let the geodesic pass through some point P. Since the space is homogeneous and isotropic, we can take P to be

the origin r = χ = 0 without any loss of generality.
▶ Consider xi = ϕ. The metric is independent of ϕ, so duϕ/dλ = 0 and hence uϕ is constant uϕ = C3.
▶ But

uϕ = gϕϕu
ϕ = −R2(t)S2k (χ) sin2 θ uϕ.

▶ Now since the geodesic passes through P where χ = 0, we have uϕ = 0 at P. Since it is a constant, uϕ = C3 = 0
along the geodesic, or, uϕ = gϕϕuϕ = 0 or, ϕ = const.

▶ For xi = θ, we have
duθ
dλ

=
1

2

∂gkl
∂θ

uluk =
1

2

∂gϕϕ
∂θ

uϕuϕ = 0.

▶ Hence uθ is constant and is given by

uθ = gθθu
θ = −R2(t)S2k (χ)u

θ = 0,

and thus θ = const.
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The radial and time equation

▶ For xi = χ, we have
duχ
dλ

=
1

2

∂gkl
∂χ

uluk =
1

2

(
∂gtt
∂χ

utut +
∂gχχ

∂χ
uχuχ

)
= 0.

▶ Hence we will have

uχ = gχχu
χ = −R2(t)

dχ
dλ

= const = K.

▶ If the initial conditions are such that K = 0, then we have χ = const, which is the case of fundamental observers. For
other geodesics, we only have R2 dχ/dλ = const.

▶ The final equation is obtained from the constraint c2(dt/dλ)2 − R2(t)(dχ/dλ)2 = 0 or 1, depending on whether the
particle is massless or massive.

▶ For photons we have

c2
(

dt
dλ

)2

=
K2

R2(t)
,

▶ For massive particles we get (using the proper time s as the affine parameter λ)

c2
(
dt
ds

)2

= 1 +
K2

R2(t)
.
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The three-momentum and energy of massive particles

▶ The three-momentum of a massive particle is

pα = m
dxα

ds
= muα.

▶ The magnitude of the three-momentum is then given by

|⃗p|2 = −gαβp
αpβ = −m2uαuα = −m2gχχuχuχ =

m2K2

R2(t)
.

▶ Hence |⃗p| ∝ 1/R(t) for massive particles.
▶ If the massive particle is non-relativistic E ≪ mc2, then its (kinetic) energy ENR ∝ p⃗2 ∝ R−2(t).
▶ On the other hand, if it moves with ultra-relativistic speeds E ≫ mc2, then E ∝ |⃗p| ∝ R−1(t).
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The three-momentum and energy of photons

▶ For photons, the energy is given by

E2 =
(
u0
)2

=

(
dt
dλ

)2

=
K2

c2R2(t)
.

▶ Thus E ∝ R−1(t), which also implies that ν ∝ R−1(t). This is the redshift of light.
▶ The photon momentum is

|⃗p|2 = − 1

c4
gχχu

χuχ = − 1

c4
gχχuχuχ =

K2

c4R2(t)
.

Thus, E2 = c2 |⃗p|2, as expected.
▶ Also |⃗p| ∝ R−1(t), similar to massive particles.
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Volume element

▶ The spatial (proper) volume element, i.e., the proper volume of the region of space lying in the infinitesmial coordinate
range (r, r+ dr), or (χ, χ+ dχ), and subtending an infinitesimal solid angle dΩ = sin θ dθ dϕ at the observer, is

dVP =
R3(t)r2 sin θ√

1− kr2
dr dθ dϕ = R3(t)S2k (χ) sin θ dχ dθ dϕ.

▶ The volume of the spherical shell of thickness dr is obtained by integrating over the solid angle

dVP =
4πR3(t)r2√
1− kr2

dr = 4πR3(t)S2k (χ) dχ.

▶ The comoving volume element is given by the same quantity evaluated at t = t0

dV =
4πR3

0r
2

√
1− kr2

dr = 4πR3
0S

2
k (χ) dχ.

▶ The importance of the comoving volume is this: imagine a set of objects that are fundamental observers, i.e., their χ
(or r) coordinates are fixed. If these objects are neither created or destroyed, then the number of objects per
comoving volume will remain constant.

▶ The number per proper volume will decrease as R−3(t) since the volume increases with time.
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Source counts
▶ Let n(t) be the number of galaxies per unit comoving volume at some epoch t.
▶ Then the number of galaxies out to a distance χmax is given by

N(χmax) =

∫ χmax

χ=0

dV n(t) = 4πR3
0

∫ χmax

0

dχ n(t)S2k (χ),

where the relation between t and χ is given by χ = c
∫ t0
t dt′/R(t′).

▶ If galaxies are neither created nor destroyed, then n(t) = n0 is a constant.
▶ If each galaxy has a luminosity L, then the flux received from each is L/(4πd2L ). The total flux received is

Fmax = 4πR3
0n0

∫ χmax

0

dχ S2k (χ)
L

4πR2
0S

2
k (χ)(1 + z)2

= LR0n0

∫ χmax

0

dχ
(1 + z)2

.

▶ Use dχ = −cdt/R(t) and 1 + z = R0/R(t) to write

Fmax = −c Ln0

∫ tmin

t0

dt
R(t)
R0

= c Ln0

∫ t0

tmin

dt
R(t)
R0

.

▶ If we integrate over the whole age of the universe, we get

Fmax = c Ln0

∫ t0

0

dt
R(t)
R0

.
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Olber’s paradox

▶ Now, suppose we assume R(t)/R0 = (t/t0)α, we get

Fmax = ct0 Ln0
1

α+ 1
,

which is clearly finite for an expanding universe α > 0.
▶ This is very significant result as it resolves what is known as the Olber’s paradox.
▶ The paradox states that for a static Euclidean universe, the night-sky should be blazing with light. If we assume that

the number density of galaxies n0 to be independent of time, and if every galaxy radiates with a luminosity L, then
the resulting flux from galaxies within a radius rmax is

Fmax =

∫ max

0

dr 4πr2 n0
L

4πr2
= Ln0rmax.

▶ Clearly, this blows up for an infinite universe rmax → ∞.
▶ Alternatively, the Olber’s paradox is stated as that in a static universe, every line of sight must end up on a luminous

star.
▶ It turns out that the darkness of night-sky is a consequence of finite age of the universe and expansion (which causes

redshift).

Tirthankar Roy Choudhury 8



Particle horizon
▶ Now, let us consider a comoving observer O situated (without loss of generality) at χ = 0.
▶ Suppose that a second comoving observer E has coordinate χE and emits a photon at cosmic time tE, which reaches O

at time t. The comoving coordinate χE of the emitter E is determined by

χE = c
∫ t

tE

dt′

R(t′)
.

▶ Assuming light to be the fastest possible signal, the only signals emitted at time tE that O receives by the time t are
from radial coordinates χ < χE.

▶ If we take tE → 0, the corresponding χE sets the limit of points which could have come in causal contact with O at
time t. This limit of the vision of the universe is known as the particle horizon.

▶ At any given cosmic time t, the χ-coordinate of the particle horizon is given by

χhor(t) = c
∫ t

0

dt′

R(t′)
.

▶ The corresponding proper distance to the particle horizon is dhor(t) = R(t)χhor(t). Note that dhor(t) ̸= c t.
▶ For a universe with R(t) = R0(t/t0)α, we get

dhor(t) =
ct

1− α
, when α < 1,

and dhor(t) → ∞ when α ≥ 1. In general, the horizon is larger when expansion is faster.
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Blackbody radiation
▶ For a blackbody, the number of photons per unit volume within a frequency range [ν, ν + dν] is given by

nνdν =
8πν2

ehPν/kBT − 1
dν.

▶ Suppose at the epoch labeled by expansion parameter R1 ≡ R(t1), the universe contains a uniform sea of blackbody
radiation at temperature T1.

▶ The number of photons in a three-dimensional proper volume dV1 in the frequency range [ν1, ν1 + dν1] is
dN = nν1(R1)dν1dV1.

▶ At the later epoch R2, each of these photons has been redshifted to frequency ν2 = ν1R1/R2.
▶ Also, the volume under consideration has expanded to dV2 = dV1R3

2/R
3
1.

▶ Assuming the photons to be conserved, we must have dN = nν2(R2)dν2dV2, i.e.,

nν1(R1)dν1dV1 = nν2(R2)dν2dV2 = nν2(R2)
R1

R2
dν1

R3
2

R3
1

dV1 = nν2(R2)
R2
2

R2
1

dν1dV1,

▶ This leads to

nν2(R2) = nν1(R1)
R2
1

R2
2

=
R2
1

R2
2

8πν2
1

ehPν1/kBT1 − 1
=

R2
1

R2
2

R2
2

R2
1

8πν2
2

ehPν2R2/kBT1R1 − 1
=

8πν2
2

ehPν2/kBT2 − 1
.

Thus nν2 also is a blackbody function, with the redshifted temperature T2 = T1 R1/R2.
▶ Hence, the temperature of a blackbody evolves as T ∝ R−1(t). This is indeed the case for CMB.
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Radiation energy density

▶ The distribution function, which is the energy per unit volume within a frequency range [ν, ν + dν], is given by

uνdν =
8πhPν3

ehPν/kBT − 1
dν.

This is also the specific intensity of a blackbody.
▶ The total blackbody radiation per unit volume (energy density) is

ρc2 =

∫ ∞

0

dν
8πhPν3

ehPν/kBT − 1
=

8πk4B
h3P

π4

15
T4 ∝ T4

▶ Since T ∝ R−1(t), we have ρ ∝ R−4(t).
▶ Note the difference with normal matter where the density scales as R−3(t).
▶ In the case of radiation, the number density scales as R−3(t) as expected, however, there is an additional factor of

R−1(t) because of the redshift of energies.
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Cosmological fluids

▶ We idealize the universe as filled with a perfect fluid which, at large scales, must be homogeneous.
▶ The fluid must be at rest in the preferred cosmological frame, for otherwise its velocity would allow us to distinguish

one spatial direction from another and the universe would not be isotropic.
▶ In general, the stress-energy tensor of the fluid will be given by

Ti j = (ρc2 + P)uiuj − P δij.

▶ In the cosmological rest frame, the fluid four-velocity is ui = (1, 0, 0, 0), and the stress-energy tensor will take the
form

Ti j = diag(ρc2,−P,−P,−P).

▶ Because of homogeneity, all fluid properties depend only on time, ρ = ρ(t), P = P(t) etc.

Tirthankar Roy Choudhury 12



The conservation equation

▶ Let us consider the equation of motion for matter (or the conservation equation) Ti j;i = 0.
▶ Because of isotropy, the spatial components of this equation must vanish identically.
▶ For the j = 0 component, we have

0 = T00;0 + Tα0;α =
∂T00
∂x0

+ Γ0
k0T

k
0 − Γk

00T
0
k +

∂Tα0
∂xα

+ Γα
kαT

k
0 − Γk

α0T
α
k

=
∂T00
∂x0

+ Γ0
00T

0
0 − Γ0

00T
0
0 + Γα

0αT
0
0 − Γβ

α0T
α
β =

d(ρc2)
dt

+ 3
Ṙ
R
(ρc2 + P).

▶ To understand the physical significance of the conservation equation, note that

d(ρc2R3)

dt
= R3

(
d(ρc2)
dt

+ 3
Ṙ
R
ρc2

)
= −3R2ṘP = −P

d(R3)

dt
.

▶ This has the form
dE+ PdV = 0,

which is the first law of thermodynamics (conservation of energy).
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The evolution of energy density

▶ Let us assume that the pressure is related to the density by

P = w ρc2.

This is often known as the equation of state.
▶ Then the conservation equation gives

0 =
d(ρc2)
dt

+ 3
Ṙ
R
(ρc2 + P) = c2ρ̇+ 3c2(1 + w)

Ṙ
R
ρ =⇒ ρ̇

ρ
= −3(1 + w)

Ṙ
R
.

▶ The solution is ln ρ = −3(1 + w) lnR+ const (for w ̸= −1) or,

ρ ∝ R−3(1+w).

For w = −1, we have ρ = const.
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Different types of cosmological fluids: dust and radiation

▶ Dust: This represents a set of particles that are rest with respect to each other. Hence they are at rest in the
cosmological frame, i.e., they are a collection of fundamental observers.

▶ These have no random motions and hence P = 0. This gives w = 0 and hence ρ ∝ R−3 (consistent with the
expansion of the volume).

▶ Radiation: The other extreme is radiation characterized by the specific intensity Iν .
▶ The energy density is

ρνc
2 =

1

c

∫
dΩ Iν ,

while the pressure is

Pν =
1

c

∫
dΩ cos2 θ Iν .

▶ For an isotropic radiation, we get

Pν =
Iν
c
× 2π × 2

3
=

4π

3

Iν
c

=
1

3
ρνc

2.

▶ Thus, for the cosmological radiation fluid, we have w = 1/3 and hence ρ ∝ R−4. This agrees with what was derived
for the blackbody radiation.
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Different types of cosmological fluids: ideal gas
▶ Non-relativistic ideal gas: Consider an ideal gas consisting of non-relativistic particles of mass m.
▶ Then the rest mass density and pressure are

ρm =
mN
V

, P =
NkBT
V

=
kBT
m

ρm,

where N is the number of particles in a volume V.
▶ Note that w ̸= kBT/mc2 because ρ ̸= ρm. There is a kinetic energy term which needs to be accounted for.
▶ The kinetic energy is nothing but the internal energy. For a gas with adiabatic index γ, it is given by

N
V

kBT
γ − 1

.

This leads to
P = (γ − 1)(ρ− ρm)c

2.

▶ Then

ρc2 = ρmc
2 +

P
γ − 1

=
mc2

kBT
P+

P
γ − 1

= P
mc2

kBT

[
1 +

1

γ − 1

kBT
mc2

]
,

which gives the equation of state to be

w =
kBT
mc2

[
1 +

1

γ − 1

kBT
mc2

]−1

.

▶ For a non-relativistic gas kBT ∼ m⟨v2⟩ ≪ mc2, hence w ≪ 1. In this case too, ρ ∝ R−3.
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