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Beam size and resolution
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Why Interferometry?

Resolution ~ A/D

A - wavelength of observation
D - size of aperture (diameter of lens/mirror)

A 4m optical telescope is ~5x108 1 (8000 A)
(1arc sec resolution requires D ~2x10° 1)

In radio A ranges from ~0.5 mm to ~10 km
(1 arc sec requires D ~100 m to ~2x103km)

Impossible to build apertures of required dimensions
and surface accuracy

Interferometry provides the solution - resolutions
corresponding to the separation between the elements
(telescopes)



Imaging with a lens (mirror)

+
N

E(6,0)

\\4

E(x, y) D

Y

It ensures that the optical path lengths Eom all points on a plane wavefront
(perpendicular to the optical axis) to the focal point are the same.




A more sophisticated perspective

Mathematically, a lens performs a Fourier Transform of the
incident wavefront
E(xy) <> E(0,¢)

Some characteristics of
optical imaging systems

 Transfer function / Point
source response / Point
spread function (PSF) -
Airy pattern

* Resolution = 1.22 A/D




The concept behind an interferometer

The important property of a parabolic dish is ) 9 Q
that it adds parallel light rays coherently : e S

Parallel rays (from infinity) have equal path
lengths to the focus, so they all arrive | P
in phase ' P

=<

This is still true if we remove segments of the B
parabola — remaining rays still reach Focus or
. beam combiner
focus in phase :

Now imagine moving the remaining segments Lo
of the dish off the surface of the paraboloid \
So long as we know very precisely where the Mirror //"\  Gonventional
segments \ ?é};igc;gga
segments are located, we can delay N . mirror

their signals appropriately and still add Rt shepe

them together coherently images: wikipedia
This, in essence, is what an interferometer does
Vincent Fish, MIT Haystack Observatory



Imaging with an unfilled aperture




Young's double-slit experiment

Path difference = nA = maxima X=nAL/D
= (n+1/2)A = minima X =(n+1/2) A L/D
r<<D<<L



A two element interferometer

Slits —»
Telescopes

Phase comes
from the (sum
of) geometric
path length,
optical fiber,
cables and
electronic
delays

Screen/Detector — Correlator

Reciprocity
theorem



SKy response of an individual baseline
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Real life fringes
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Sun @ 125 MHz, 26 Apr, 2005, Mileura, Western Australia
Murchison Widefield Array — Early Deployment effort, phase 2




What are these fringes?

- Young’s double slit
- Fringes are a function of position
- Constant in time

- Astronomical fringes

- Arise because the relative motion between the
astronomical source and the interferometer changes the
effective baseline (D Cos0)

- For a given baseline, function of time

- Assumption: source does not change during the course
of the observation

- Fringestop — Usually this geometric phase is corrected
for in the data, and you do not get to see it.
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Baselines and u-v plane
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Visibility V(u,v)

 The fundamental Radio Astronomy measurable
Vii(u,v, LAt vg,Av) = <Vi(...) X Vj*(. A T P

dvan Cittert Zernike Theorem

V(u,v) is 2D Fourier Transform of the sky
Brightness distribution B(0, )

(T(x,y) in the following slides)
* Incoherent source,
« Small field of view
« Far-field



Visibilities

* each V(u,v) contains information on T(Xx,y) everywhere, not
just at a given (x,y) coordinate or within a given subregion

* V(u,v) is a complex quantity

— visibility expressed as (real, imaginary) or (amplitude, phase)

V(u,v)

amplitude phase

6

Courtesy David J. Vilner, Harvard-Smithsonian Center for Astrophysics, USA



Example 2D Fourier Transform Pairs

T(xy) amp{V(u,v);

O function constant
elliptical elliptical
Gaussian Gaussian

narrow features transform into wide features (and vice-versa)
7

Courtesy David J. Vilner, Harvard-Smithsonian Center for Astrophysics, USA



Example 2D Fourier Transform Pairs

T(xy) amp{V(u,v)}

disk

Bessel

sharp edges result in many high spatial frequencies .

Courtesy David J. Vilner, Harvard-Smithsonian Center for Astrophysics, USA



Amplitude and Phase

« amplitude tells “how much™ of a certain spatial frequency

* phase tells “where” this component is located

T(xy) V(u,v)

amplitude

0

Courtesy David J. Vilner, Harvard-Smithsonian Center for Astrophysi};s, USA



AR :
The Visibility Concept

V(u,v) = [ [T(x,y)e2 (=) dpdy

* visibility as a function of baseline coordinates (u,v) is the
Fourier transform of the sky brightness distribution as a
function of the sky coordinates (x,y)

* V(u=0,v=0) is the integral of T(x,y)dxdy = total flux

* since T(x,y) is real, V(u,v) is Hermitian: V(-u,-v) = V*¥(u,v)

— gettwo visibilities for one measurement

10

Courtesy David J. Vilner, Harvard-Smithsonian Center for Astrophysics, USA



An N element interferometer

‘Baselines’ from N elements —
N(N-1)/2

Each of these will lead to a
fringe’ with different orientation
and spacing

The final response of the
interferometer will be the
superposition of fringes from
all the baselines




Synthesis imaging

VLA - 27 antennas = 351 baselines
GMRT - 30 antennas = 435 baselines
MWA — 128 elements = 8,128 baselines



The mathematical basis

- Brightness distribution in the sky is Fourier
transform of the Visibilities
B(6,p) <> V(u,v)
V(u,v) — The quantity measured by a baseline
(amplitude, phase / real, imaginary)

- In the uv-plane, we measure visiblilities only at a
few places i.e. we have a sampling function

S(u,v) = Zy (U, Vi)
- Point source response of an interferometer (PSF)
is Fourier transform of S(u,v)
P(6,9) <> S(u,v)



Dirty Beam Shape and N Antennas

2 Antennas
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Courtesy David J. Vilner, Harvard-Smithsonian Center for Astrophysics, USA



AR :
Dirty Beam Shape and N Antennas

3 Antennas
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Courtesy David J. Vilner, Harvard-Smithsonian Center for Astrophysics, USA



AR :
Dirty Beam Shape and N Antennas

4 Antennas
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Courtesy David J. Vilner, Harvard-Smithsonian Center for Astrophysics, USA



AR :
Dirty Beam Shape and N Antennas

5 Antennas
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Courtesy David J. Vilner, Harvard-Smithsonian Center for Astrophysics, USA
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Dirty Beam Shape and N Antennas
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Courtesy David J. Vilner, Harvard-Smithsonian Center for Astrophysics, USA
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Dirty Beam Shape and N Antennas
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Courtesy David J. Vilner, Harvard-Smithsonian Center for Astrophysics, USA
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Dirty Beam Shape and N Antennas
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Dirty Beam Shape and N Antennas

8 Antennas x 30 samples

= i
= .
- -~
[ ] -
. - g
ﬁ - - - " T a
- - - T
- - - —— i
st - * = - &
28 — o
Fanlill = - - E
= o - - . = —
S bl — o
- =
2 = 5
= . * - i
| - 2%
- =
—y . -
o - -
3 . ]
|
1 i 1 i 1 i 1 i 1
=400 =200 L&) 200 400
u [lked)

RA offset (aresec; J2000)

29
Courtesy David J. Vilner, Harvard-Smithsonian Center for Astrophysics, USA



AR :
Dirty Beam Shape and N Antennas

8 Antennas x |20 samples
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Courtesy David J. Vilner, Harvard-Smithsonian Center for Astrophysics, USA



AR :
Dirty Beam Shape and N Antennas

8 Antennas x 480 samples
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Courtesy David J. Vilner, Harvard-Smithsonian Center for Astrophysics, USA



So what do we finally have?

BS(0,0) = FT (S(u,v) x V(u,v))

From convolution theorem

BS(0,¢) = P(0,0) ® B(0,¢)

® - convolution

P(0,p) = FT S(u,v); B(6,p) = FT V(u,v)

The FT of sampled visibilities gives the True sky
Brightness distribution convolved with the Point
Spread Function.

‘Dirty image’ is True image convolved with the
‘Dirty beam'.



