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Abstract. I review the current status of quasar black hole (BH) mass estimations.
Spectroscopic methods have been developed to estimate BH mass in broad line quasars
to an accuracy of ∼ 0.5 dex. Despite their popularity, significant issues and confusion
remain regarding these mass estimators. I provide an in-depth discussion on the merits
and caveats of the single-epoch (SE) virial BH mass estimators, and a detailed deriva-
tion of the statistical biases of these SE mass estimates resulting from their errors. I
show that error-induced sample biases on the order of a factor of several are likely
present in the SE mass estimates for flux-limited, statistical quasar samples, and the
distribution of SE masses in finite luminosity bins can be narrower than the nominal
uncertainty of these mass estimates. I then discuss the latest applications of SE vir-
ial masses in quasar studies, including the early growth of supermassive black holes,
quasar demography in the mass-luminosity plane, and the evolution of the BH-host
scaling relations, with specific emphases on selection effects and sample biases in the
SE masses. I conclude that there is a pressing need to understand and deal with the
errors in these BH mass estimates, and to improve these BH weighing methods with
substantially more and better reverberation mapping data.
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1. Introduction

Shortly after the discovery of quasars at great cosmological distances (Schmidt 1963), it was
realized that the energy required to power these luminous and compact sources must be of grav-
itational origin rather than from nuclear reaction (e.g., Hoyle & Fowler 1963; Salpeter 1964;

∗In this review I use the terms “quasar” and “Active Galactic Nucleus (AGN)” interchangeably to refer to all active
supermassive black holes, although traditionally quasars are loosed defined as the luminous (Lbol & 1012 L�) subset of
AGNs. By default I use quasars and AGNs to refer to unobscured (Type 1), broad-line objects unless otherwise specified.
†email: yshen@obs.carnegiescience.edu
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Zel’dovich & Novikov 1964; Lynden-Bell 1969). The standard picture now is that mass is ac-
creted onto a supermassive black hole (SMBH) at the center of the galaxy, and the gravitational
energy is released during this accretion process to power quasar activity. If the SMBH grows
mostly via this accretion process, its mass growth rate is simply: ṀBH = λLEdd(1 − ε)/(εc2),
where LEdd = lMBH = 1.26 × 1038(MBH/M�) erg s−1 is the Eddington luminosity of the BH,
λ = Lbol/LEdd is the Eddington ratio, and ε is the radiative efficiency, i.e., the fraction of accreted
mass energy converted into radiation. If both λ and ε are non-evolving, the BH mass increases by
one e-fold on a characteristic timescale te ≡ εc2/[(1 − ε)λl] ≈ 4.5 × 108 ε

λ(1−ε) yr, also known as
the Salpeter time or e-folding time. If quasars do not radiate beyond the Eddington limit λ = 1,
the observed luminosity provides a lower-limit on their BH mass (e.g., Zel’dovich & Novikov
1964). The discovery of luminous quasars (with Lbol & 1047 erg s−1) at z > 6 (e.g., Fan et al.
2001; Mortlock et al. 2011) then suggests that SMBHs with MBH > 109 M� are already formed
in the first billion year after the Big Bang.

In the past two decades or so, there has been tremendous progress in the demographic studies
of SMBHs in the nuclei of nearby galaxies (for recent reviews, see, e.g., Kormendy & Richstone
1995; Ferrarese & Ford 2005; Kormendy & Ho 2013). It has come to the consensus that SMBHs
with masses of ∼ 105 − 1010 M� are almost ubiquitous at the center of massive galaxies with a
significant spheroidal (bulge) component, and also exist in at least some low-mass galaxies. More
remarkably, the mass of the nuclear BH is tightly correlated with the properties of the bulge in the
local samples (e.g., Gebhardt et al. 2000; Ferrarese & Merritt 2000; Graham et al. 2001; Tremaine
et al. 2002; Marconi & Hunt 2003; Aller & Richstone 2007; Gültekin et al. 2009), allowing
an estimate of the local SMBH mass function by convolutions with galaxy bulge distribution
functions. These BH-bulge scaling relations promoted the notion of BH-galaxy co-evolution,
during which the energy release from the accreting SMBH self-regulates its growth, and impacts
the formation and evolution of the bulge via feedback processes (e.g., Silk & Rees 1998; King
2003; Di Matteo et al. 2005). Such feedback from active SMBHs (i.e., AGN feedback) has
also been invoked in most present-day theoretical modeling of galaxy formation, to bring better
agreement with the observed statistics of massive galaxies. However, the significance of AGN
feedback and BH-host co-evolution is still under some debate and is an active area of research.

An elegant argument tying the local relic SMBH population to the past active population is
the Sołtan argument (Soltan 1982): if SMBHs grow mainly through a luminous (or obscured)
quasar phase, then the accreted luminosity density of quasars to z = 0, ρ•,acc, should equal the
local relic BH mass density ρ•:

ρ•,acc =

∫ ∞

0

dt
dz

dz
∫ ∞

0

(1 − ε)L
εc2 Φ(L, z)dL ≈ ρ• , (1)

where Φ(L, z) is the bolometric luminosity function (LF) per L interval. Given the observed
quasar luminosity function, a reasonably good match between ρ•,acc and ρ• can be achieved if the
average radiative efficiency ε ∼ 0.1 (e.g., Yu & Tremaine 2002; Shankar et al. 2004; Marconi
et al. 2004, also see Salucci et al. 1999; Fabian 1999; Elvis et al. 2002), consistent with the mean
ε value constrained from individual quasars with spectral fitting (e.g., Davis & Laor 2011). The
Sołtan argument and its variants have been used extensively in recent years to model the growth of
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SMBHs with constraints from the demographies of local BH relics and the past AGN population
(for a recent review, see Shankar 2009). These exercises are mainly facilitated by the advent of
modern large-scale, multiwavelength sky surveys, which have provided large and homogeneous
data sets many folds more than what was available twenty years ago, as well as measurements of
the abundance and clustering properties of quasars with unprecedented precision.

The growth of SMBHs is among the key science topics in modern galaxy formation studies
(for a relatively complete summary of recent progress on this topic, see, e.g., Alexander & Hickox
2012, and references therein). As one of the few fundamental quantities describing a BH, the mass
of quasars is of paramount importance to essentially all quasar-related science: the evolution and
phenomenology of quasars, accretion physics, the relations and interplays between SMBHs and
their host galaxies.

In this review I discuss the current status of quasar BH mass estimations and how these
developments can further our understandings of the physics and evolution of SMBHs. I presume
the reader has a basic understanding of AGNs and I will skip elaborations on the usual AGN
terminologies, which can be found in AGN textbooks (e.g., Peterson 1997; Krolik 1999). This
review is mostly pragmatic without going into the detailed and sometimes poorly understood
physics behind observations; some further readings can be found in the quoted references.

There are several recent reviews on measuring active and inactive BH masses (e.g., Peterson
2010; Czerny & Nikolajuk 2010; Vestergaard et al. 2011; Marziani & Sulentic 2012), which
summarized some general concepts and practical procedures in measuring SMBH masses. While
some of the common materials are also covered in the current review for completeness, the scope
and focus of this review are different: after an introduction on BH mass measurements in §2, I
describe in detail the caveats and statistical biases of the most frequently used BH mass estimators
in §3, in light of recent work invoking statistical quasar samples; several applications of these BH
mass estimates to quasar studies are discussed in §4, and I conclude this review in §5 with a
discussion on future perspectives of improving BH weighing methods. A flat ΛCDM cosmology
is adopted throughout this review, with ΩΛ = 0.7, Ω0 = 0.3 and H0 = 70 km s−1Mpc−1.

2. Methods to measure quasar BH masses

2.1 Virial BH masses: From reverberation mapping to single-epoch methods

Reverberation mapping The broad emission line regions in AGNs are powered by photoioniza-
tions from the central source (e.g., Peterson 1997), an assumption now widely accepted based
on observations of correlated broad line and continuum variations. In fact, this photoionization
assumption led to the first suggestions (e.g., Bahcall et al. 1972) of lagged broad line responses
to continuum variations, where the lag reflects the light travel time from the ionizing source to
the broad line region (BLR). In the 1970s there were already reported lag measurements be-
tween broad emission line and continuum variations in several local Seyfert nuclei (e.g., Lyutyj
& Cherepashchuk 1974). Despite the low data quality that may impact the reliability of the de-
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tection, these studies were among the first attempts to directly measure BLR sizes. This idea was
later developed in greater detail by Blandford & McKee (1982), who suggested that by mapping
the response function of the broad emission line to continuum variations one can in principle
reconstruct the structure and kinematics of the BLR, a technique they coined “reverberation map-
ping” (RM). Today RM has become a practical and powerful tool to study BLRs (see reviews by,
e.g., Peterson 1993; Netzer & Peterson 1997; Horne et al. 2004), whose spatial extent (∼ sub-pc)
is too small to be resolved by current instrumentation. There are now several dozens of AGNs
and quasars (most are at z < 0.3) with average lag measurements (e.g., Kaspi et al. 2000; Peterson
et al. 2004; Bentz et al. 2009b), although only a handful of them have decent velocity-resolved
delay maps (e.g., Denney et al. 2009a; Bentz et al. 2010; Grier et al. 2013) to utilize the full power
of RM.

RM lag measurements provide an estimate of the typical size of the BLR. If we further
assume that the BLR is virialized and the motion of the emitting clouds is dominated by the
gravitational field of the central BH, then the mass of the BH is determined by (e.g., Ho 1999;
Wandel et al. 1999):

MRM =
V2

virR
G

= f
W2R

G
, (2)

where Vvir is the virial velocity and R is the BLR size. In practice we use the width of the broad
line, W, as an indicator of the virial velocity, assuming that the broad line is Doppler broadened
by the virial motion of the emitting gas. The product W2R/G is called the virial product. There
are two commonly used line width definitions, the “full-width-at-half-maximum” (FWHM), and
the line dispersion σline (i.e., the second moment of the line, Peterson et al. 2004). The pros
and cons of both definitions will be discussed later. In computing the RM BH masses, both line
widths are measured from the rms spectra from the monitoring period, thus only the variable part
of the line contributes to the line width calculation.

To account for our ignorance of the structure and geometry of the BLR which determine
the relation between the virial velocity and the line-of-sight (LOS) velocity inferred from W,
we have introduced a virial coefficient (or geometrical factor), f 1, in Eqn. (2). This is a big
simplification, because the BLR structure and viewing angle determine the entire line profile,
and the line width, being only one characteristic of the line profile, can not fully describe the
underlying kinematic structure. Similarly it is an approximation to describe the BLR with a
single radius R. Nevertheless, given the difficulties and ambiguities of modeling the line profile
directly, Eqn. (2) involving line widths and f is used almost universally. For BLR clouds in
randomly orientated orbits, an often quoted value is f ≈ 3/4 (3) if W = FWHM (σline) (Netzer
1990), although such a f value is derived under some simplifications and approximations and
is not a rigorous analytic result. In practice, the value of f is now empirically determined by
requiring that the derived RM masses are consistent with those predicted from the BH mass-
bulge stellar velocity dispersion (MBH − σ∗) relation of local inactive galaxies (e.g., Onken et al.
2004): f ≈ 1.4 (5.5) for W = FWHM (σline). This f value is of course then the averaged value

1Some studies define the virial coefficient differently, i.e., Vvir ≡ f W (e.g., McLure & Jarvis 2002; Decarli et al.
2008a).
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for the subset of RM AGNs with bulge stellar velocity dispersion measurements. The uncertainty
in f and the simplification of it as a single constant remain one of the major uncertainties in RM
mass determinations, as further discussed in §3.1.2.

The uncertainty of the RM masses is typically a factor of a few, or ∼ 0.4 − 0.5 dex (e.g.,
Peterson 2010), based on comparisons between RM masses and predictions from the MBH − σ∗
relation, and accounting for other potential systematics.

The R−L relation Perhaps the most remarkable finding of RM observations is a tight correlation
between the measured BLR size and the adjacent optical continuum luminosity Lopt (usually
measured at restframe 5100 Å), R ∝ Lα, over ∼ 4 orders of magnitude in luminosity. This
is known as the BLR size-luminosity relation, or the R − L relation (e.g., Kaspi et al. 2000,
2005; Bentz et al. 2009a). To first order all broad line quasars have similar spectral energy
distributions (SEDs) from X-ray to optical2, so Lopt is proportional to the ionizing continuum Lion.
The ionization parameter in a photoionized medium is U = Q(H)/(4πr2cne), where Q(H) ∝ L is
the number of ionizing photons from the central source per second, c is the speed of light, and ne

is electron density. Thus a slope of α = 0.5 in the R− L relation is expected, if U and the electron
density are more or less constant in BLRs. Alternatively, a slope of α = 0.5 is also predicted if
the BLR size is set by dust sublimation (e.g., Netzer & Laor 1993).

Early RM work reported a slope of α ∼ 0.7 (e.g., Kaspi et al. 2000). Later work which
carefully accounted for host starlight contamination to Lopt reported α ≈ 0.5 (e.g., Bentz et al.
2009a), closer to naive expectations from photoionization. The intrinsic scatter of the R − L
relation is estimated to be ∼ 0.15 dex (∼ 0.11 dex with the best quality RM data, Peterson 2010).
The latest version of the R − L relation based on Hβ RM measurements is (Bentz et al. 2009a):

log
R

light days
= −21.3 + 0.519 log

λLλ(5100Å)
erg s−1 . (3)

The tightness of the R − L relation has led to suggestions to use this relation as an absolute
luminosity indicator to use quasars as a cosmology probe (e.g., Watson et al. 2011; Czerny et al.
2012), although RM measurements of BLR sizes and quantification of the R − L relation beyond
z ∼ 0.3 are yet to come (e.g., Kaspi et al. 2007).

Single-epoch (SE) virial BH mass estimators The observed R − L relation provides a much less
expensive way to estimate the size of the BLR based on the luminosity of the quasar. Subse-
quently this relation has been used to develop the so-called “single-epoch virial black hole mass
estimators”3 (SE virial masses or SE masses in short hereafter): one estimates the BLR size from

2It is also important to recognize that AGN SEDs can vary significantly from object to object, and some of these
variances in SED must introduce certain scatter in the observed R − L relation based on measurable continuum instead of
the ionizing continuum, and may cause systematic changes of BLR structure with SED properties (which might affect the
virial coefficient f ).

3Such methods are also known as BH mass scaling methods (e.g., Vestergaard et al. 2011). Occasionally, this method
is referred to as the “photoionization method” (e.g., Peterson 2011; Salviander & Shields 2012). This may be a little
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the measured quasar luminosity using the R − L relation, and the width of the broad emission
line, which are then combined to give an estimate of the BH mass using calibration coefficients
determined from the sample of AGNs with RM mass estimates. Specifically, these estimators
take the form:

log
(

MSE

M�

)
= a + b log

(
L

1044 erg s−1

)
+ c log

( W
km s−1

)
, (4)

where L and W are the quasar continuum (or line) luminosity and width for the specific line, and
coefficients a, b and c are calibrated against RM AGNs. In Eqn. (4), the coefficient on line width
is usually taken to be c = 2, as expected from viral motion. Other values of c are suggested,
however, depending on the definition of line width, and will be discussed further in §3. Based on
the general similarity of quasar SEDs (both continuum and line strength), different luminosities
have been used, including continuum luminosities in X-ray, restframe UV and optical, as well
as line luminosities, in various versions of these single-epoch virial estimators (e.g., Vestergaard
2002; McLure & Jarvis 2002; McLure & Dunlop 2004; Wu et al. 2004; Greene & Ho 2005;
Vestergaard & Peterson 2006; Kollmeier et al. 2006; Onken & Kollmeier 2008; Wang et al. 2009;
Vestergaard & Osmer 2009; Greene et al. 2010b; Rafiee & Hall 2011b; Shen et al. 2011; Shen &
Liu 2012; Trakhtenbrot & Netzer 2012). In general continuum luminosities are preferred over line
luminosities given their tighter correlations with BLR size, but in some cases line luminosities are
preferred where the continuum may be significantly contaminated by host starlight (e.g., Greene
& Ho 2005), or by the nonthermal emission from a jet in radio-loud objects (e.g., Wu et al. 2004).
As for the choice of line width, both FWHM and line dispersion (σline) are utilized in these
calibrations.

The uncertainty of these various single-epoch virial estimators can be inferred from the resid-
uals in the calibrations against the RM masses, and is estimated to be on the order of ∼ 0.5 dex
(e.g., McLure & Jarvis 2002; Vestergaard & Peterson 2006). This is similar to the uncertainty of
RM masses, and can hardly be smaller since this method is rooted in the RM technique. Reasons
and consequences of such substantial mass uncertainties will be elaborated in §3. From now on I
will refer to RM and SE masses collectively as virial BH masses.

The virial estimators (RM and SE) currently are the best method in estimating quasar BH
masses. Therefore after a brief discussion on alternative methods (§2.2), I will focus on these
virial estimators in the rest of the review.

2.2 Other methods to estimate quasar BH masses

There are several other methods to estimate the mass of quasars. They are much less popular than
the RM method and its extension, the SE virial method. Nevertheless there is certain merit in

ambiguous, since in practice this empirical method is based on RM results rather than photonionization calculations, even
though the observed R − L relation is consistent with naive photoionization predictions. The “photoionization method”
better refers to those that estimate the BLR size using photoionization arguments (see §2.2).
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further developing some of these methods, for instance, to provide complementary mass estimates
and consistency checks. Therefore I give a brief discussion on these alternative methods.

Photoionization method Historically Dibai was the first to systematically measure BH masses
for quasar samples since the 1970s (e.g., Dibai 1977, 1980, 1984). Adopting Woltjer’s postulation
that the BLR gas is in virial equilibrium in the gravitational potential of the central BH (Woltjer
1959), Dibai used Eqn. (2) to estimate the BH mass, where the width of the line is used to indicate
the virial velocity. To estimate the BLR size R, Dibai used the photoionization argument:

L(Hβ) =
4π
3

R3 j(neTe)εV , (5)

where L(Hβ) is the luminosity of the Hβ line, j(neTe) is the volume emissivity in the Hβ line from
photoionized gas, and εV is the volume filling factor of BLR clouds. Adopting constant values of
ne ≈ 109 cm−3, Te ≈ 104 K and εV ≈ 10−3, Dibai estimated BH masses for more than ∼ 70 nearby
Seyfert 1 galaxies and quasars, and made the first plot of the distribution of AGNs in the mass-
luminosity plane. Technically speaking, Dibai’s method is also a single-epoch method, and it has
an effective R−L relation of R ∝ L(Hβ)1/3, shallower than the observed R−L relation. Despite the
simplifications in Dibai’s approach (sometimes unphysical), many of his BH mass estimates of
local AGNs are consistent with today’s RM masses to within 0.3 dex (e.g., Bochkarev & Gaskell
2009). Dibai’s method also motivated some later quasar BH mass estimations based on the same
argument. For example, Wandel & Yahil (1985) used the same method with modifications to the
volume filling factor, and derived a radius-luminosity relation R ∝ L(Hβ)1/2.

Along a completely independent path, photoionization arguments based on the ionization pa-
rameter U were used to estimate the BLR size (e.g., Netzer 1990; Wandel et al. 1999), building
on earlier development of photoionization equilibrium theory in the 1970s (e.g., Davidson 1972;
Davidson & Netzer 1979). This approach emphasizes more on the role of the ionizing contin-
uum, and provides an intuitive understanding of the observed R − L relation. But just as Dibai’s
method, all these photoionization-based methods require assumptions or indirect constraints on
the physical conditions of the BLR gas (such as density, covering factor, etc) to infer the BLR
size, therefore today they are not as popular as the more empirical, but more accurate RM-based
methods discussed in §2.1.

Accretion disk model fitting (SED fitting) Another method to infer the mass of the BH is by fit-
ting the SED of quasars. The development of accretion disk theory over the last four decades (for
a recent review, see, e.g., Abramowicz & Fragile 2013) has enabled predictions of the emitting
continuum spectrum of accreting BHs. By fitting the observed quasar continuum SED, one can
constrain the model parameters (such as BH mass, accretion rate, BH spin, inclination) with ade-
quate accretion disk models. Many studies have used this SED fitting method to infer BH masses
in AGNs (e.g., Malkan 1983; Sun & Malkan 1989; Wandel & Petrosian 1988; Laor 1990; Rokaki
et al. 1992; Tripp et al. 1994; Ghisellini et al. 2010; Calderone et al. 2012), usually assuming a
standard thin accretion disk model (Shakura & Sunyaev 1973). One main concern here is that
standard accretion disk models, while can successfully produce broad-band features (such as the
“big blue bump”, e.g., Shields 1978), do not yet have the capability to fully explain the AGN
SED (e.g., Koratkar & Blaes 1999; Lawrence 2012), and the resulting BH mass constraints may
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be sensitive to these deviations from standard accretion disk models. Given that there are para-
meter degeneracies and model assumptions/simplifications in the SED fitting procedure and the
requirement for good multiwavelength coverage in UV-optical (where most of the disk emission
comes from), this method generally cannot provide an accuracy of better than a factor of ∼ five
in BH mass estimates at the moment (e.g., Laor 1990; Calderone et al. 2012). But it would be
interesting to compare this method with the virial methods (§2.1) for larger samples.

Microlensing in gravitationally lensed quasars – alternative routes to BLR sizes Since resolving
the BLRs requires µas to tens of µas angular resolution, RM will remain the primary method to
measure the size of BLR in the next decade or two. Another indirect method to measure BLR size
is via microlensing in gravitationally lensed quasars. The Einstein radius in the source (quasar)
plane of a point-mass lens with mass M is rE =

√
4GMDsDLS /(DLc2), where Ds, DL and DLS

are the angular diameter distances to the source, to the lens, and from the lens to the source. For
typical values zL = 0.5 and zS = 2 we have rE ≈ 0.01

√
M/M� pc, corresponding to an angular

scale θE = rE/DS ≈
√

M/M� µas. This scale is comparable to the size of the BLR and accretion
disk. Due to the relative transverse motion between the lens and source, large magnification can
happen on short time scales (tcross = rsource/v⊥) during caustic-crossing in the source plane (for a
primer on gravitational lensing, see, e.g., Schneider et al. 1992). Since the continuum emission
(from the inner accretion disk) and BLR emission have different spatial scales4, microlensing
will cause differential variability for the continuum and different broad lines, which can be used
to constrain the size (and geometry) of the emitting regions, such as the accretion disk and the
BLR (e.g., Irwin et al. 1989; Lewis et al. 1998; Popović et al. 2001; Richards et al. 2004a; Morgan
et al. 2010; Dai et al. 2010; Mosquera & Kochanek 2011; Sluse et al. 2011, 2012; Guerras et al.
2013). In particular, the latest study by Guerras et al. (2013) found a R − L relation based on
microlensing BLR sizes, which is in reasonably good agreement with that based on RM. This
technique is primarily applied to quasars that are already strongly lensed (with multiple images)
for which the microlensing probability by stars/compact objects in the foreground lens galaxy is
high, and the time delays between different images are known. The latter is important to rule
out variability due to intrinsic AGN variability, which will often complicate the microlensing
interpretation.

Direct dynamical BH masses Although observationally challenging (given the overwhelming
AGN continuum that dilutes the stellar absorption features and nongravitational forces on gas
dynamics in the nucleus), there have been several attempts to get direct dynamical measurements
of BH masses in Type 1 AGNs, using spatially resolved stellar kinematics (e.g., Davies et al.
2006; Onken et al. 2007) or gas kinematics (e.g., Hicks & Malkan 2008) down to the sphere
of influence, RSI = GMBH/σ

2
∗, of the BH. The number of AGNs with reliable dynamical BH

mass measurements is still small, and it would be important to obtain more dynamical mass
measurements of AGNs to provide critical consistency checks on virial BH masses.

4The BLR and the accretion disk are probably not disjointed, i.e., some portion of the BLR gas could originate from
the outer part of the accretion disk or from a wind launched from the disk, and high-ionization lines could have different
origins from low-ionization lines, as in some models (e.g., Collin-Souffrin et al. 1988; Elvis 2000; Risaliti & Elvis 2010).
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Other indirect methods These methods use correlations between BH mass and other measurable
quantities, calibrated with known BH masses, to infer the BH mass in quasars. By virtue they can
be applied to non-broad-line quasars as well, if the required quantity is measurable, but caution
should be paid to possible systematics of each method. These correlations include the well-known
BH-host scaling relations found for local inactive galaxies. For instance, the MBH − σ∗ relation
in local inactive galaxies is used to predict BH masses in local RM AGNs with σ∗ measurements
(see §3.1.2). Another example is the observed anti-correlations between BH mass (estimated
with other methods) and X-ray variability properties of AGNs, such as the break frequency in the
power spectral densities (PSDs) of X-ray light curves or variability amplitude (e.g., Papadakis
2004; O’Neil et al. 2005; McHardy et al. 2006; Zhou et al. 2010), which have the potential to
provide independent BH mass estimates to within a factor of a few to the RM masses. The
reliability and systematics of the X-ray variability method, however, are yet to be explored with
larger AGN samples with known BH masses.

3. Caveats, uncertainties, and biases of virial BH masses

3.1 Physical concerns

3.1.1 The virial assumption

There are evidence supporting the virial assumption in RM in at least several AGNs (e.g., Peterson
& Wandel 1999, 2000; Onken & Peterson 2002; Kollatschny 2003). For these objects RM lags
have been successfully measured for multiple lines with different ionization potentials (such as
Hβ, CIV, HeII) and line widths, which are supposed to arise at different distances, as in a stratified
BLR for different lines. The measured lags and line widths of these different lines fall close to the
expected virial relation W ∝ R−1/2, although such a velocity-radius scaling does not necessarily
rule out other BLR models where the dynamics is not dominated by the gravity of the central BH
(e.g., see discussions in Krolik 2001). A more convincing argument is based on velocity-resolved
RM, where certain dynamical models (such as outflows) can be ruled out based on the difference
(or lack thereof) in the lags from the blue and red parts of the line (e.g., Gaskell 1988). On the
other hand, non-virial motions (such as infall and/or outflows) may indeed be present in some
BLRs, as inferred from recent velocity-resolved RM in a handful of AGNs (e.g., Denney et al.
2009a; Bentz et al. 2010; Grier et al. 2013). Fortunately, even if the BLR is in a non-virial state,
one might still expect that the velocity of the BLR clouds (as measured through the line width)
does not deviate much from the virial velocity. Thus using Eqn. (2) does not introduce a large
bias, and in principle this detail is accounted for by the virial coefficient f in individual sources.

A further test of the virial assumption on the single-epoch virial estimators is to see if the
line width varies in accordance to the changes in luminosity for the same object. The picture
here is that when luminosity increases (decreases) the BLR expands (shrinks), and the line width
should decrease (increase), given enough response time. This test is important, because if the
line width does not change accordingly to luminosity changes, the SE mass will change for the
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Figure 1. A test of the virial assumption using two-epoch spectroscopy from SDSS for Hβ (upper), Mg 

(middle) and CIV (bottom). Plotted here are the changes in line width as a function of changes in continuum
luminosity (L5100, L3000, and L1350 for Hβ, Mg , and CIV, respectively) between the two epochs. The left
column is for FWHM and the right column is for σline. The dots are for all objects with measurement S/N> 3
at both epochs for both L and W (not for ∆ log L and ∆ log W). These objects tend to cluster around zero
values because the typical continuum and line variabilities of SDSS quasars are small. The red triangles are
the median values in each ∆ log L bin, where the error bars indicate the uncertainty in the mean. A perfect
virial relation would imply ∆ log W = −0.25∆ log L, as indicated by the solid line in each panel. Note that
I have neglected the chromatic nature of quasar variability, which would predict an even steeper relation
between ∆ log W and ∆ log L (see §3.1.1 for details). The low-redshift z . 0.7 SDSS quasars with median
luminosity 〈log(L5100/erg s−1)〉 = 1044.6 show the expected virial relation between ∆ log L and ∆ log W,
which is not the case for the high-luminosity SDSS quasars at z > 0.7 based on Mg  or CIV.
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same object, introducing a luminosity-dependent bias in the mass estimates (see §3.3.2). This
test is challenging in practice, given the limited dynamic range in continuum variations and the
presence of measurement errors. Nevertheless, in several AGNs with high-quality RM data, such
anti-correlated variations of line width and BLR size (or continuum luminosity) have been seen
(e.g., Peterson et al. 2004; Park et al. 2012b), once the lag between continuum and line variations
is taken into account. While this lends some further support for RM and SE virial estimators, it
should be noted that: 1) not all RM AGNs show this expected behavior, given insufficient data
quality; 2) it makes a difference which line width measurements (i.e., FWHM vs σ, rms vs mean
spectra) and which BLR size estimates (i.e., τ vs continuum luminosity) are used.

It is also not clear if the above results based on a few RM AGNs apply to the general quasar
population. Fig. 1 shows a test of the co-variation of line width and continuum luminosity using
thousands of SDSS quasars with spectra at two epochs (She, Shen, et al., in prep). While for the
majority of these quasars the two epochs do not span a large dynamic range in luminosity, the
large number of objects provide good statistical constraints on the average trend. In Fig. 1 the
black dots are measurements for individual objects, and they cluster near the center because most
quasars do not vary much between the two epochs. The measurement uncertainties on ∆ log L
and ∆ log W are large, so I bin the results in ∆ log L bins and plot the medians and uncertainties
in the median in each bin in red triangles. The measurement uncertainties in ∆ log L and ∆ log W
are comparable for all three lines, but only for the low-luminosity and low-z (z . 0.7) Hβ sample
is the median relation consistent with the virial relation (the solid lines in Fig. 1). For the other
samples at z > 0.7 based on Mg  and CIV, the line width does not seem to respond to luminosity
changes as expected from the virial relation. This difference could be a luminosity effect, but
more detailed analyses are needed (She, Shen, et al., in prep).

Another important point to make is that there is a well known fact that quasar spectra get
harder (bluer) as they get brighter (e.g., Vanden Berk et al. 2004, and references therein). This
means that the variability amplitude in the ionizing continuum should be larger than that at longer
wavelengths (i.e., the observed continuum). Thus we should see a somewhat steeper slope in the
line width change versus the (observed) continuum luminosity change plot for a single object
(e.g., Peterson et al. 2002). This, however, would be in an even larger disagreement with the
trends we see in Fig. 1.

3.1.2 The virial coefficient f

To relate the observed broad line width to the underlying virial velocity (e.g., Eqn. 2) requires the
knowledge of the (emissivity weighted) geometry and kinematics of the BLR. In principle RM
can provide such information, and determine the value of f from first principles. Unfortunately
the current RM data are still not good enough for such purposes in general, although in a few
cases alternative approaches have been invented lately to account for the effect of f in directly
modeling the RM data using dynamical BLR models (e.g., Brewer et al. 2011; Pancoast et al.
2012). Early studies made assumptions about the geometry and structure of the BLR in deriving
RM masses (e.g., Netzer 1990; Wandel et al. 1999; Kaspi et al. 2000) or SE virial masses (e.g.,
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McLure & Dunlop 2004). Now the average value of f is mostly determined empirically by
requiring that the RM masses are consistent with those predicted from the MBH − σ∗ relation
of local inactive galaxies. Such an exercise was first done by Onken et al. (2004), who used 16
local AGNs with both RM measurements and stellar velocity dispersion measurements to derive
〈 f 〉 ≈ 1.4 if FWHM is used, or 〈 f 〉 ≈ 5.5 if σline is used. Later this was repeated with new RM
data (e.g., Woo et al. 2010), who derived a similar value of 〈 f 〉 ≈ 5.2 (using σline).

However, in recent years it has become evident that the scaling relations between BH mass
and bulge properties are not as simple as we thought: it appears that different types of galaxies
follow somewhat different scaling relations, and the scatter seems to increase towards less massive
systems (e.g., Salucci et al. 2000; Hu 2008; Greene et al. 2008; Graham 2008; Graham & Li
2009; Hu 2009; Gültekin et al. 2009; Greene et al. 2010b; McConnell & Ma 2012, and references
therein). Therefore, depending on the choice of the specific form of the MBH − σ∗ relation used
and the types of galaxies hosting RM AGNs in the calibration, the derived average f value could
vary significantly. For instance, Graham et al. (2011) derived a 〈 f 〉 value that is is only half of
the values derived by Onken et al. (2004) and Woo et al. (2010). Park et al. (2012b) performed
a detailed investigation on the effects of different regression methods and sample selection in
determining the MBH − σ∗ relation and in turn the 〈 f 〉 value, and concluded that the latter is the
primary cause for the discrepancy in the reported 〈 f 〉 values. Given the small sample sizes of RM
AGNs with host property measurements and the uncertainties in the BH-host scaling relations in
inactive galaxies, the uncertainty of 〈 f 〉 is still ∼ a factor of 2 or more, and will remain one of the
main obstacles to estimate accurate RM (or SE) BH masses in terms of the overall normalization.
One may also expect that the actual f value is different in individual sources, either from the
diversity in BLR structure or from orientation effects (since the line width only reflects the line-
of-sight velocity, see §3.1.6). Thus using a constant f value in these RM masses and SE virial
estimators introduces additional scatter in these mass estimates.

Perhaps a more serious concern is the assumption that the BH-host scaling relations are the
same in active and inactive galaxies. While there is a clear correlation between bulge properties
and the RM masses in RM AGNs (e.g., Bentz et al. 2009c), it could be offset from that for inactive
galaxies if the actual 〈 f 〉 value is different. Such a scenario is plausible if the BH growth and host
bulge formation are not always synchronized. The only way to tackle this problem is to infer
f from directly constrained BLR geometry/kinematics with exquisite velocity-resolved RM data
that map the line response (transfer function) in detail, and this must be done for a large number
of AGNs to explore its diversity.

3.1.3 FWHM versus line dispersion

Both FWHM and σline are commonly used in SE virial mass estimates as the proxy for the virial
velocity (when combined with the virial coefficient f ). Both definitions have advantages and
disadvantages. FWHM is a quantity that is easier to measure, less susceptible to noise in the
wings and treatments of line blending than σline, while σline is less sensitive to the treatment of
narrow line removal and peculiar line profiles. Overall FWHM is preferred over σline in terms of
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easiness of the measurement and repeatability. As σline measurements depend sensitively on data
quality and different methods used (e.g., Denney et al. 2009b; Rafiee & Hall 2011a,b; Assef et al.
2011), the SE virial masses (e.g., Eqn. 4) based on σline could differ significantly for the same
objects.

Physically one may argueσline is more trustworthy to use than FWHM, although the evidence
to date is only suggestive. Collin et al. (2006) compared the virial products based on both σline
and FWHM with those expected from the MBH − σ∗ relation, for 14 RM AGNs. All their line
width measurements were based on the rms or mean spectra of the RM AGNs. They found that
the average scale factor (i.e., the virial coefficient f ) between virial products to the MBH − σ∗
masses depends on the shape of the line if FWHM is used, while it is more or less constant if
σline is used. Based on this, they argue that σline is a better surrogate to use in estimating RM
masses. Additionally, σline measured in rms spectra seems to follow the expected virial relation
better than FWHM in some RM AGNs (e.g., Peterson et al. 2004), although such evidence is
circumstantial.

It is important to note that for a given line, the ratio of FWHM to σline is not necessarily a
constant (e.g., Collin et al. 2006; Peterson 2011, but cf., Decarli et al. 2008a), while a Gaussian
line profile leads to FWHM/σline ≈ 2.35. For Hβ, FWHM/σline seems to increase when the
line width increases. This might be related to the Populations A and B sequences developed by
Sulentic and collaborators (Sulentic et al. 2000a), which is an extension of earlier work on the
correlation space of AGNs (the so-called “eigenvector 1”, e.g., Boroson & Green 1992; Wang
et al. 1996). A direct consequence is that there will be systematic differences in MSE whether
FWHM or σline is used for the same set of quasars, especially for objects with extreme line
widths. In general a “tilt” between the FWHM and σline-based virial masses is expected (e.g.,
Rafiee & Hall 2011a,b). Currently directly measuring σline from single-epoch spectra is much
more ambiguous and methodology-dependent than measuring FWHM. If one accepts that σline
is a more robust virial velocity indicator, it is possible to convert the measured FWHM to σline
using the relation found for high S/N data (e.g., Collin et al. 2006), or empirically determine the
dependence of SE mass on FWHM (i.e., coefficient c in Eqn. 4) using RM masses as calibrators
(e.g., Wang et al. 2009), which generally leads to values of c < 2.

The choice of line width indicators is still an open issue. It will be important to revisit the
arguments in, e.g., Collin et al. (2006), using not only more but also better-quality RM data,
as well as to investigate the behaviors of FWHM and σline (and perhaps alternative line width
measures) for large quasar samples.

3.1.4 Broad line profiles

As briefly mentioned in §2.1, part of the reason that we are struggling with f and line width
definitions is because of the simplifications of a single BLR size and using only one line profile
characteristic to infer the underlying BLR velocity structure. If we have a decent understanding
of the BLR dynamics and structure (geometry, kinematics, emissivity, ionization, etc.), then in
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principle we can solve the inverse problem of inferring the virial velocity from the broad line
profile. Unfortunately, the detailed BLR properties are yet to be probed with velocity-resolved
reverberation maps, and the solution of this inverse problem may not be unique (e.g., different
BLR dynamics and structure may produce similar line profiles).

Nevertheless, there have been efforts to model the observed broad line profiles with simple
BLR models. The best known example is the disk-emitter model (e.g., Chen et al. 1989; Eracleous
& Halpern 1994; Eracleous et al. 1995), where a Keplerian disk with a turbulent broadening
component is used to model the double-peaked broad line profile seen in ∼ 10 − 15% radio-loud
quasars (and several percent of radio-quite quasars). The line profile then can place constraints
on certain geometrical parameters, such as the inclination of the disk, thus has relevance in the
f value for individual objects (e.g., La Mura et al. 2009). Another example is using simple
kinematic BLR models to explain the trend of the line shape parameter FWHM/σline as a function
of line width (e.g., Kollatschny & Zetzl 2011, 2013), as mentioned earlier in §3.1.3. These authors
found that a turbulent component broadened by a rotation component can explain the observed
trend of line shape parameter, and their model provides conversions between the observed line
width and the underlying virial (rotational) velocity. More complicated BLR models can be built
(e.g., Goad et al. 2012), which has the potential to underpin a physical connection between the
BLR structure and the observed broad line characteristics. While all these exercises are worth
further investigations, it is important to build self-consistent models that are also verified with
velocity-resolved RM.

3.1.5 Effects of host starlight and dust reddening

The luminosity that enters the R − L relation and the SE mass estimators (Eqn. 4) refers to the
AGN luminosity. At low AGN luminosities, the contamination from host starlight to the 5100Å
luminosity can be significant. This motivated the alternative uses of Balmer line luminosities
in Eqn. (4) (e.g., Greene & Ho 2005). Using line luminosity is also preferred for radio-loud
objects where the continuum may be severely contaminated by the nonthermal emission from
the jet (e.g., Wu et al. 2004). Bentz et al. (2006) and Bentz et al. (2009a) showed that properly
accounting for the host starlight contamination at optical luminosities in RM AGNs leads to a
slope in the R − L relation that is closer to the naive expectation from photoionization. Similarly,
using host-corrected L5100 can lead to reduced scatter in the Hβ-L5100 SE calibration against RM
AGNs (e.g., Shen & Kelly 2012).

The average contribution of host starlight to L5100 has been quantified by Shen et al. (2011),
using low-redshift SDSS quasars. They found that significant host contamination (& 20%) is
present for log L5100,total < 1044.5 erg s−1, and provided an empirical correction for this average
contamination. Variations in host contribution could be substantial for individual objects though.

For UV luminosities (L3000, L1350 or L1450), the host contamination is usually negligible, al-
though may be significant for rare objects with excessive ongoing star formation. A more serious
concern, however, is that some quasars may be heavily reddened by dust internal or external to
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the host. The so-called “dust-reddened” quasars (e.g., Glikman et al. 2007) have UV luminosi-
ties significantly dust attenuated, and corrections are required to measure their intrinsic AGN
luminosities. It is possible that optical quasar surveys (such as SDSS) are missing a significant
population of dust-reddened quasars.

3.1.6 Effects of orientation and radiation pressure

If the BLR velocity distribution is not isotropic, orientation effects may affect the RM and SE
mass estimates. Specific BLR geometry and kinematics, such as a flattened BLR where the orbits
are confined to low latitudes, will lead to orientation-dependent line width. Some studies report a
correlation between the broad line FWHM and the source orientation inferred from radio proper-
ties5 (e.g., Wills & Browne 1986; Jarvis & McLure 2006), in favor of a flattened BLR geometry.
Similar conclusions were achieved in Decarli et al. (2008a) based on somewhat different argu-
ments. Since we use the average virial coefficient 〈 f 〉 in our RM and SE mass estimates, the true
BH masses in individual sources may be over- or underestimated depending on the actual incli-
nation of the BLR (e.g., Krolik 2001; Decarli et al. 2008a; Fine et al. 2011; Runnoe et al. 2013)6.
The distributions of broad line widths in bright quasars are typically log-normal, with dispersions
of ∼ 0.1 − 0.2 dex over ∼ 5 magnitudes in luminosity (e.g., Shen et al. 2008a; Fine et al. 2008,
2010). A thin disk-like BLR geometry with a large range of inclination angles cannot account
for such narrow distributions of line width, indicating either the inclination angle is limited to a
narrow range for Type 1 objects, and/or there is a significant random velocity component (such as
turbulent motion) of the BLR. This limits the scatter in BH mass estimates caused by orientation
effects to be < 0.2 − 0.4 dex.

So far we have assumed that the dynamics of the BLR is dominated by the gravity of the
central BH. The possible effects of radiation pressure, which also has a ∝ R−2 dilution as gravity,
on the BLR dynamics have been emphasized by, e.g., Krolik (2001). On average the possible
radiation effects are eliminated in the empirical calibration of the 〈 f 〉 value (see §3.1.2), but
neglecting such effects may introduce scatter in individual sources and luminosity-dependent
trends. Most recently Marconi et al. (2008) modified the virial mass estimation by adding a
luminosity term:

MBH,M08 = f
W2R

G
+ g

(
L5100

1044 erg s−1

)
M� , (6)

5Some recent studies (e.g., Fine et al. 2011; Runnoe et al. 2013) argue that the dependence of line FWHM on source
orientation is different for low-ionization and high-ionization lines, such that the CIV-emitting gas velocity field may be
more isotropic than Hβ and Mg .

6Of some relevance here is the interpretation of the apparently small BH masses in a sub-class of Type 1 AGNs
called narrow-line Seyfert 1s (NLS1s), where the Hβ FWHM is narrower than 2000 km s−1 along with other unusual
properties (such as strong iron emission and weak [O ] emission). Some argue (e.g., Decarli et al. 2008b) that NLS1s
are preferentially seen close to face-on, hence their virial BH masses based on FWHM are underestimations of true
masses. However, NLS1s also differ from normal Type 1 objects in ways that are difficult to explain with orientation
effects (such as weak [O ] and strong X-ray variability). Orientation may play some role in the interpretation of NLS1s
(especially for a minority of radio-loud NLS1s), but is unlikely to be a major factor.
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where the last term describes the effect of radiation pressure on the BLR dynamics with a free
parameter g. By allowing this extra term, Marconi et al. (2008) re-calibrated the RM masses
using the MBH−σ∗ relation, and the SE mass estimator using the new RM masses. This approach
improves the rms scatter between single-epoch masses and RM masses, from ∼ 0.4 dex to ∼ 0.2
dex, and removes the slight systematic trend of the SE mass scatter with RM masses seen in
Vestergaard & Peterson (2006). However, it is also possible that the reduction of scatter between
the SE and RM masses is caused by the addition of fitting freedoms. Since the intrinsic errors on
the RM masses are unlikely to be < 0.3 dex, optimizing the SE masses relative to RM masses to
smaller scatter may lead to blown-up errors when apply the optimized scaling relation to other
objects. It would be interesting to split the RM sample in Marconi et al. (2008) in half and use one
half for calibration and the other half for prediction, and see if similar scatter can be achieved in
both subsets. The relevance of radiation pressure is also questioned by Netzer (2009), who used
large samples of Type 1 and Type 2 AGNs from the SDSS to show that the radiation-pressure
corrected viral masses lead to inconsistent Eddington ratio distributions in Type 1s and Type
2s, even though the [O ] luminosity distribution is consistent in the two samples. However,
Marconi et al. (2009) argues that the difference in the “observed” Eddington ratio distributions
does not mean that radiation pressure is not important, rather it could result from a broad range of
column densities which are not properly described by single values of parameters in the radiation-
pressure-corrected mass formula. These studies then revealed that using the simple corrected
formula as provided in Marconi et al. (2008) does not provide a satisfactory recipe to account
for radiation pressure in RM or SE mass estimates, and the relevance of radiation pressure and a
practical method to correct for its effect are therefore still under active investigations (e.g., Netzer
& Marziani 2010).

3.1.7 Comparison among different line estimators

There are both low-ionization and high-ionization broad lines in the restframe UV to near-infrared
of the quasar spectrum. Despite different ionization potential and probably different BLR struc-
ture, several of them have been adopted as SE virial mass estimators. The most frequently used
line-luminosity pairs include strong Balmer lines (Hα and Hβ) with L5100 or LHα,Hβ, Mg  with
L3000, and CIV with L1350 or L1450. Hydrogen Paschen lines in the near-IR can also be used if
such near-IR spectroscopy exists.

There have been SE calibrations upon specific lines against RM masses, or against SE masses
based on another line. Comparisons between different SE line estimators using various quasar
samples are often made in the literature: some claim consistency, while others report discrepancy.
As emphasized in Shen et al. (2008a), it is important to use a consistent method in measuring
luminosity and line width with that used for the calibrations if one wants to make a fair compar-
ison using external samples. Failure to do so may lead to unreliable conclusions (e.g., Dietrich
Hamann 2004).

The continuum luminosities at different wavelengths and several line luminosities are all cor-
related with each other, with different levels of scatter. Fig. 2 shows some correlations between
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different continuum luminosities using the spectral measurements of SDSS quasars from Shen
et al. (2011). To compare L1350 and L5100 directly, one needs either UV+optical or optical+near-
IR to cover both restframe wavelengths. Fig. 3 (left) shows such a comparison from a recent
sample of quasars with optical spectra from SDSS and near-IR spectra from Shen & Liu (2012),
which probes a higher luminosity range L5100 > 1045.4 erg s−1 than the SDSS sample. Correlations
between these luminosities are still seen at the high-luminosity end. For the SDSS quasar popu-
lation, different luminosities correlate with each other well, but this may be somewhat affected by
the optical target selection of SDSS quasars that may preferentially miss dust-reddened quasars
(see §3.1.5). In other words, the intrinsic dispersion in the UV-optical SED may be larger for the
general quasar population. For instance, Assef et al. (2011) found a much larger dispersion in the
L1350/L5100 ratio for a gravitationally lensed quasar sample, which is selected differently from the
SDSS. This large dispersion in the L1350/L5100 ratio will lead to more scatter between the Hβ and
CIV based SE masses.

It is also important to compare the widths of different lines. Since Hβ is the most studied line
in reverberation mapping and the R − L relation was measured using BLR radius for Hβ (e.g.,
Kaspi et al. 2000, 2005; Bentz et al. 2009a), it is reasonable to argue that the SE mass estimators
based on the Balmer lines are the most reliable ones. The width of the broad Hα is well correlated
with that of the broad Hβ and therefore it provides a good substitution in the absence of Hβ (e.g.,
Greene & Ho 2005). The widths of Mg  are found to correlate well with those of the Balmer
lines (e.g., Salviander et al. 2007; McGill et al. 2008; Shen et al. 2008a, 2011; Wang et al. 2009;
Vestergaard et al. 2011; Shen & Liu 2012, see Fig. 2 for a comparison based on SDSS quasars).
But such a correlation may not be linear: despite different methods to measure line widths, most
recent studies favor a slope shallower than unity in the correlation between the two FWHMs (e.g.,
see Fig. 2). Given this correlation it is practical to use the Mg  width as a surrogate for Hβ width
in a Mg -based SE mass estimators, and some recent Mg  calibrations can be found in, e.g.,
Vestergaard & Osmer (2009); Shen & Liu (2012); Trakhtenbrot & Netzer (2012). However, one
intriguing feature regarding the Mg  line is that the distribution of its line widths seem to have
small dispersions in large quasar samples (e.g., Shen et al. 2008a; Fine et al. 2008). It appears
as if the Mg  varies at a less extent compared with Hβ (cf., Woo 2008, and references therein).
It is also recently argued that for a small fraction of quasars (∼ 10%) in the NLS1 regime (e.g.,
small Hβ FWHM and strong FeII emission), Mg  may have a blueshifted, non-virial component,
and an overall larger FWHM than Hβ, that will bias the virial mass estimate (e.g., Marziani et al.
2013). This is consistent with the general trend found between Mg  and Hβ FWHMs using SDSS
quasars (e.g., Wang et al. 2009; Shen et al. 2011; Vestergaard et al. 2011), and may be connected
to the disk wind scenario for CIV discussed below.

The correlation between Hβ (or Mg ) and CIV widths is more controversial. While some
claim that these two do not correlate well (e.g., Bachev et al. 2004; Baskin & Laor 2005; Netzer
et al. 2007; Shen et al. 2008a; Fine et al. 2010; Shen & Liu 2012; Trakhtenbrot & Netzer 2012),
others claim there is a significant correlation (e.g., Vestergaard & Peterson 2006; Assef et al.
2011). Fig. 3 (right) shows a compilation of CIV and Hβ FWHMs from the literature, which are
derived for quasars in different luminosities and redshift ranges. Only the low-luminosity (and
low-z) RM sample in Vestergaard & Peterson (2006) shows a significant correlation. It is often
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Figure 2. Comparisons between different continuum luminosities and line FWHMs, using SDSS quasar
spectra that cover two lines. Shown here are the local point density contours. Measurements are from
Shen et al. (2011). The upper panels show the correlations between continuum luminosities, and the bottom
panels show the correlations between line FWHMs. While the Mg  FWHM correlates with Hβ FWHM
reasonably well, the correlation between the CIV FWHM and Mg  FWHM is poor (also see, e.g., Shen
et al. 2008a; Fine et al. 2008, 2010).

argued that sufficient data quality is needed to secure the CIV FWHM measurements, although
measurement errors are unlikely to account for all the scatter seen in the comparison between CIV

and Hβ FWHMs – the correlation between the two is still considerably poorer than that between
Mg  and Hβ FWHMs for the samples in Fig. 3 when restricted to high-quality data. Shen & Liu
(2012) suggested that the reported strong correlation between CIV and Hβ FWHMs is probably
caused by the small sample statistics, or only valid for low-luminosity objects.
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Figure 3. Left: correlations between different luminosities using the quasar sample in Shen & Liu (2012),
which covers all four lines (CIV, Mg , Hβ, Hα) in the same object, for the high-luminosity regime L5100 >

1045.4 erg s−1. The solid lines are the bisector linear regression results using the BCES estimator (e.g., Akritas
& Bershady 1996), and the dashed lines indicate a linear correlation of unity slope. Right: comparison
between CIV FWHM and Hβ FWHM using different samples from the literature [Shen & Liu (2012, 60
objects; SL12), Assef et al. (2011, 9 objects; A11), Vestergaard & Peterson (2006, 21 objects; VP06),
Netzer et al. (2007, 15 objects; N07), and Dietrich et al. (2009, 9 objects; D09)]. Only for the low-redshift
and low-luminosity VP06 sample is there a significant correlation between the two FWHMs.

The high-ionization CIV line also differs from low-ionization lines such as Mg  and the
Balmer lines in many ways (for a review, see Sulentic et al. 2000b). Most notably it shows
a prominent blueshift (typically hundreds, up to thousands of km s−1) with respect to the low-
ionization lines (e.g., Gaskell 1982; Tytler & Fan 1992; Richards et al. 2002), which becomes
more prominent when luminosity increases. There is also a systemic trend (albeit with large
scatter) of increasing CIV FWHM and line asymmetry when the CIV blueshift increases, a trend
not present for low-ionization lines (e.g., Shen et al. 2008a, 2011). The CIV blueshift is predom-
inantly believed to be an indication of outflows in some form, and integrated in the disk-wind
framework discussed below (but see Gaskell 2009, for a different interpretation). These prop-
erties of CIV motivated the idea that CIV is likely more affected by a non-virial component than
low-ionization lines (e.g., Shen et al. 2008a), probably from a radiatively-driven (and/or MHD-
driven) accretion disk wind (e.g., Konigl & Kartje 1994; Murray et al. 1995; Proga et al. 2000;
Everett 2005), especially for high-luminosity objects. A generic two-component model for the
CIV emission is then implied (e.g., Collin-Souffrin et al. 1988; Collin et al. 2006; Richards et al.
2011; Wang et al. 2011). A similar argument is proposed by Denney (2012) based on the CIV RM
data of local AGNs, where she finds that there is a component of the CIV line profile that does not
reverberate, which is likely associated with the disk wind (although alternative interpretations ex-
ist). This may also explain the poorer correlation between CIV width and Hβ (or Mg ) width for
more luminous quasars, where the wind component is stronger (see further discussion in §3.1.9).
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Therefore CIV is likely a biased virial mass estimator (e.g., Baskin & Laor 2005; Sulentic et al.
2007; Netzer et al. 2007; Shen et al. 2008a; Marziani & Sulentic 2012, and references therein).

Although in principle certain properties of CIV (such as line shape parameters) can be used to
infer the CIV blueshift and then correct for the CIV-based SE mass, such corrections are difficult
in practice given the large scatter in these trends and typical spectral quality. Proponents on the
usage of CIV line often emphasize the need for good-quality spectra and proper measurements of
the line width. But the fact is CIV is indeed more problematic than the other lines, and there is
no immediate way to improve the CIV estimator for high-redshift quasars, although some recent
works are showing some promising trends that may be used to improve the CIV estimator (e.g.,
Denney 2012).

There have also been proposals for using the CIII], AlIII, or SiIII] lines in replacement of CIV

(e.g., Greene et al. 2010a; Marziani & Sulentic 2012). Shen & Liu (2012) found that the FWHMs
of CIV and CIII] are correlated with each other, and hence CIII] may not be a good line either
(also see Ho et al. 2012). On the other hand, AlIII and SiIII] are more difficult to measure given
their relative weakness compared to CIV and CIII] as well as their blend nature, hence are not
practical for large samples of quasars. Another possible line to use is Lyα. Although Lyα is more
severely affected by absorption, intrinsically it may behave similarly as the Balmer lines. Such
an investigation is ongoing.

To summarize, currently the most reliable lines to use are the Balmer lines, although this
conclusion is largely based on the fact that these are the most studied and best understood lines,
and does not mean there is no problem with them. Mg  can be used in the absence of the Balmer
lines, although the lack of RM data for Mg  poses some uneasiness in its usage as a SE estimator.
CIV has local RM data (though not enough to derive a R−L relation on its own), but the application
of CIV to high-redshift and/or high-luminosity quasars should proceed with caution. In light of
the potential problems with CIV, efforts have been underway to acquire near-IR spectroscopy
to study the high-z quasar BH masses using Mg  and Balmer lines (e.g., Shemmer et al. 2004;
Netzer et al. 2007; Marziani et al. 2009; Dietrich et al. 2009; Greene et al. 2010a; Trakhtenbrot
et al. 2011; Assef et al. 2011; Shen & Liu 2012; Ho et al. 2012; Matsuoka et al. 2013).

3.1.8 Effects of AGN variability on SE masses

Quasars and AGNs vary on a wide range of timescales. It is variability that made reverberation
mapping possible in the first place. One might be concerned that the SE masses may be subject
to changes due to quasar variability. Several studies have shown, using multi-epoch spectra of
quasars, that luminosity changes (and possibly corresponding changes in line width) do not in-
troduce significant (& 0.1 dex) scatter to the SE masses (e.g., Wilhite et al. 2007; Denney et al.
2009b; Park et al. 2012a). This is expected, since the average luminosity variability amplitude
of quasars is only ∼ 0.1 − 0.2 magnitude over month-to-year timescales (e.g., Sesar et al. 2007;
MacLeod et al. 2010; MacLeod et al. 2012), thus the difference in SE masses from multi-epoch
spectra will be dominated by measurement errors (in particular those on line widths).
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Figure 4. An updated version of Fig. 18 in Richards et al. (2011), showing the biased distribution of the
local RM AGNs in the parameter space for CIV (blueshift relative to Mg  versus the rest equivalent width).
The contours and dots are 1.5 . z . 2.2 SDSS quasars, and the blue filled circles are RM AGNs. The black
and red contours show the results for radio-quiet and radio-loud populations respectively. Most of the RM
AGNs occupy quadrant I, where the CIV line is dominated by the virial component in the two-component
picture in Richards et al. (2011). In this picture, quadrant IV is for CIV lines dominated by the non-virial
wind component. The average quasar luminosity increases from quadrant I to quadrant IV. Figure courtesy
of G. Richards.

However it is legitimate to consider the consequence of uncorrelated stochastic variations
between line width and luminosity on SE masses, whether or not such uncorrelated variations are
due to actual physical effects, or due to improper measurements of the continuum luminosity and
line widths. Examples are already given in §3.1.1, and more detailed discussion will be provided
in §3.3.

3.1.9 Limitations of the RM AGN sample

Last but not least, the current RM sample is by no means representative of the general quasar/AGN
population. It is a highly heterogeneous sample that poorly samples the high-luminosity regime of
quasars, and most objects are at z < 0.3. This alone calls into question the reliability of extrapola-
tions of locally-calibrated SE relations against these RM AGNs to high-z and/or high-luminosity
quasars.
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The distribution of the RM AGNs in the spectral parameter space of quasars is also highly
biased relative to the general population. Richards et al. (2011) developed (building on earlier
ideas by, e.g., Collin-Souffrin et al. 1988; Murray et al. 1995; Proga et al. 2000; Elvis 2000;
Leighly & Moore 2004; Leighly 2004; Collin et al. 2006) a generic picture of a two-component
BLR structure for CIV, composed of a virial component, and a non-virial wind component which
is filtering the ionizing continuum from the inner accretion disk. This generic picture is able
to explain, phenomenologically, many characteristics of the continuum and CIV line properties,
such as the CIV blueshift and the Baldwin effect (i.e., the anti-correlation between CIV equivalent
width and adjacent continuum luminosity, Baldwin 1977). Fig. 4 shows the distribution of RM
objects in the parameter space of CIV spectral properties, where most RM AGNs occupy the
regime dominated by the virial component. Part of this is driven by luminosity, since more
luminous quasars have on average larger CIV blueshift (§3.1.7). It will be important to explore
this under-represented regime with CIV RM at high-redshift, which has just begun (e.g., Kaspi
et al. 2007). Although this is an immediate concern for CIV, Richards et al. (2011) made a fair
argument that the BLR properties for Hβ and Mg  may also be biased in the RM sample relative
to all quasars, if the non-virial wind component is also affecting the BLR of Hβ and Mg  by
filtering the ionizing continuum.

To date most of the RM lag measurements are for Hβ, and lag measurements are either
lacking for Mg  (but see Metzroth et al. 2006; Woo 2008, and references therein, for Mg  RM
attempts and tentative results) or insufficient for CIV to derive a direct R − L relation based on
these two UV lines. The total number of RM AGNs is also small, ∼ 50, not enough to probe
the diversity in BLR structure and other general quasar properties. The current sample size and
inhomogeneity of RM AGNs pose another major obstacle to develop precise BH mass estimators
based on RM and its extension, SE virial methods.

3.2 Practical concerns

3.2.1 How to measure the continuum luminosity and line widths

Usually the continuum and line properties are measured either directly from the spectrum, or de-
rived from χ2 fits to the spectrum with some functional forms for the continuum and for the lines.
Arguably functional fits are better suited for spectroscopic samples with moderate to low spectral
quality. As briefly mentioned earlier (§3.1.7), it is essential to measure the continuum and line
width properly when using the existing SE calibrations. Different methods sometimes do yield
systematically different results, in particular for the line width measurements. Some studies fit
the broad lines with a single component (e.g., McLure & Dunlop 2004), while others use multi-
ple components to fit the broad line. But if one wants to use the calibration in, e.g., McLure &
Dunlop (2004), then it is better to be consistent with their fitting method. Some comparisons be-
tween the broad line widths from different fitting recipes can be made using the catalog provided
in Shen et al. (2011). Take Hβ for example, since this broad line is not always a single Gaussian
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or Lorentzian, the line widths from the single-component and multiple-component fit could differ
significantly in some cases.

The detailed description of spectral fitting procedure can be found in many papers (e.g.,
McLure & Dunlop 2004; Greene & Ho 2005; Shen et al. 2008a, 2011; Shen & Liu 2012). In
short, the spectrum is first fit with a power-law plus an iron emission template7 in several spectral
windows free of major broad lines. The best-fit “pseudo-continuum” is then subtracted from
the original spectrum, leaving the emission line spectrum. The broad line region is then fit with a
mixture of functions (such as multiple Gaussians or Gauss-Hermite polynomials). The continuum
luminosity and line width are then extracted from the best-fit model. The measurement errors
from the multiple component fits are often estimated using some Monte Carlo methods (e.g.,
Shen et al. 2011; Shen & Liu 2012): mock spectra are generated either by adding noise to the
original spectrum, or by adding “scrambled” residuals from the data minus best-fit model back to
the model. The mock spectra are then fit with the same fitting procedure, and the formal errors
are estimated from the distributions of the measured quantity from the mocks. This mock-based
error estimation approach takes into account both the noise of the spectrum and ambiguities in
decomposing different components in the fits.

Below are some additional notes regarding continuum and line measurements.

• Narrow line subtraction Since the narrow line region (NLR) dynamics is not dominated
by the central BH gravity, we want to subtract strong narrow line component before we
measure the broad line width from the spectrum. This is particularly important for FWHM
measurements, while forσline the effects of narrow lines are less important. For Hβ and Hα,
reliable constraints on the velocity and width of the narrow components can be obtained
from the adjacent narrow lines such as [O III] λλ4959,5007 and [S II] λλ6717,6731. For
Mg  and CIV, this is not so simple mainly for two reasons: 1) there are usually no adjacent
strong narrow lines such as [O ] to provide constraints on the narrow line component;
and even if [O ] can be covered in other wavelengths there is no guarantee the NLR
properties are the same for [O ] and for Mg /CIV. 2) Although some quasars do show
evidence of narrow component Mg  and CIV, it is unclear if this applies to the general
quasar population. Shen & Liu (2012) found that for the 60 high-luminosity (L5100 >
1045.4 erg s−1) quasars in their sample with optical and near-IR spectroscopy covering CIV

to [O ], the contribution of the narrow line component to CIV is too small to affect the
estimated broad CIV FWHM significantly. However, for less luminous objects, the relative
importance of the narrow line component to CIV might be larger (e.g., Bachev et al. 2004;
Sulentic et al. 2007).

7Empirical iron emission templates in the rest-frame UV to optical can be found in, e.g., Boroson & Green (1992);
Vestergaard & Wilkes (2001); Tsuzuki et al. (2006). Using different iron templates may lead to small systematic offsets
(. 0.05 dex) in the measured continuum luminosity and line width (e.g., Nobuta et al. 2012). Occasionally a Balmer
continuum component is added in the pseudo-continuum fit to improve the fit around the “small blue bump” region near
3000Å (e.g., Grandi 1982; Dietrich et al. 2002), but such a component is generally difficult to constrain from spectra with
limited wavelength coverage (see discussions in, e.g., Wang et al. 2009; Shen & Liu 2012).
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• Remedy for absorption Sometimes there are absorption features superposed on the spec-
trum, which is most relevant for CIV, and then Mg . Not accounting for these absorption
features will bias the continuum and line measurements. While for narrow or moderately-
broad absorption troughs, manual or automatic treatments can greatly minimize their ef-
fects (e.g., Shen et al. 2011), there is no easy way to fit objects that are heavily absorbed
(such as broad absorption line quasars).

• Effects of low signal-to-noise ratio (S/N) The quality of the continuum luminosity and line
width measurements decreases as the quality of the spectrum degrades. In addition to in-
creased measurement errors, low S/N data may also lead to biases in the spectral measure-
ments. Denney et al. (2009b) performed a detailed investigation on the effects of S/N on the
measured Hβ line width using many single-epoch spectra of two RM AGNs (NGC 5548
and PG1229+204). They tested both direct measurements and Gauss-Hermite polynomial
fits to the spectrum, and found that the best-fit line width is systematically underestimated
at low S/N for both direct measurements and functional fits. The only exception is that
their Gauss-Hermite fits to degraded NGC 5548 spectra tend to overestimate the FWHM
at lower S/N. However, this is mainly caused by the fact that the Gauss-Hermite model is
often unable to accurately fit the complex Hβ line profile of NGC 5548. Using multiple-
Gaussian model fits, and for a much larger sample of SDSS quasars, Shen et al. (2011)
also investigated the effects of S/N on the model fits by artificially degrading high S/N
spectra (see their Figs. 5-8). They found that the exact magnitude of the bias depends on
the line profile as well as the strength of the line. The continuum is usually unbiased as
S/N decreases. The FWHMs and equivalent widths (EWs) are biased by less than ±20%
for high-EW objects as S/N is reduced to as low as ∼ 3/pixel. For low-EW objects, the
FWHMs and EWs are biased low/high by > 20% for S/N. 5/pixel. But the direction of
the bias in FWHM is not always underestimation.

3.3 Consequences of the uncertainties in SE mass estimates

Given the many physical and practical concerns discussed in §§3.1 and 3.2, one immediately
realizes that these mass estimates, especially those SE mass estimates, should be interpreted with
great caution. Almost everyone acknowledges the large uncertainties associated with these mass
estimates, but only very few are taking these uncertainties seriously. Since at present there is
no way to know whether or not the extrapolation of these SE methods to high-z and/or high-
luminosity quasars introduces significant biases, let us assume naively that these SE estimators
provide unbiased mass estimates in the average sense, and focus on the statistical uncertainties
(scatter) of these estimators.

In mathematical terms, we have:

me|m = m + G(0, σSE) , (7)

where me ≡ log MBH,SE is the SE mass estimate, m ≡ log MBH is the true BH mass, and G(µ, σ) is
a Gaussian random deviate with mean µ and dispersion σ. I use x|y to denote a random value of
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x at fixed y drawn from the conditional probability distribution p(x|y). Eqn. (7) thus means that
the distribution of SE masses given true BH mass, p0(me|m), is a lognormal with mean equal to m
and dispersion σSE. It is then clear that this equation stipulates our assumption that the SE mass
is on average an unbiased estimate of the true mass, but with a statistical scatter of σSE ∼ 0.5
(dex), i.e., the formal uncertainty of SE masses.

3.3.1 The Malmquist-type bias (Eddington bias)

Now let us assume that we have a mass-selected sample of objects with known true BH masses,
and “observed” masses based on the SE estimators. By “mass-selected” I mean there is no se-
lection bias caused by a flux (or luminosity) threshold – all BHs are observed regardless of their
luminosity. If we further assume that the distribution of true BH masses in this sample is bottom-
heavy, then a statistical bias in the SE masses naturally arises from the errors of SE masses (e.g.,
Shen et al. 2008a; Kelly et al. 2009a; Shen & Kelly 2010; Kelly et al. 2010), because there are
more intrinsically lower-mass objects scattering into a SE mass bin due to errors than do in-
trinsically higher-mass objects. This statistical bias can be shown analytically assuming simple
analytical forms of the distribution of true BH masses. Suppose the underlying true mass distri-
bution is a power-law, dN/dm ∝ MγM

BH, then Bayes’s theorem tells us the distribution of true BH
masses at given SE mass is (recall p0(me|m) is the conditional probability distribution of me given
m):

p1(m|me) = p010γMm
[∫

p010γMmdm
]−1

= (2πσ2
SE)−1/2 exp

−
[m − (me + ln(10)γMσ

2
SE)]2

2σ2
SE

 . (8)

Thus the expectation value of true mass at given SE mass is:

〈m〉me = me + ln(10)γMσ
2
SE . (9)

Therefore for bottom-heavy (γM < 0) true mass distributions, the average true mass at given
SE mass is smaller by − ln(10)γMσ

2
SE dex than the SE mass. This has an important consequence

that the quasar black hole mass function (BHMF) constructed using SE virial masses will be
severely overestimated at the high-mass end (e.g., Kelly et al. 2009a, 2010; Shen & Kelly 2012).

This statistical bias due to the uncertainty in the mass estimates and a non-flat true mass
distribution is formally known as the Eddington bias (Eddington 1913). Historically this has
also been referred to as the Malmquist bias in studies involving distance estimates (e.g., Lynden-
Bell et al. 1988), which bear some resemblance to the familiar Malmquist bias in magnitude-
limited samples (e.g., Malmquist 1922). For this reason, this bias was called the “Malmquist” or
“Malmquist-type” bias in Shen et al. (2008a) and Shen & Kelly (2010), and I adopted this name
here as well. Perhaps a better name for this class of biases is the “Bayes correction”, which then
also applies to the generalization of statistical biases caused by threshold data and correlation
scatter (or measurement errors). The luminosity-dependent bias discussed next, and the Lauer
et al. bias (Lauer et al. 2007) discussed in §4.3, can also be described by this name.
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3.3.2 Luminosity-dependent bias in SE virial BH masses

Now let us take one step further, and consider the conditional probability distribution of me at
fixed true mass m and fixed luminosity l ≡ log L, p(me|m, l). If the SE mass distribution at given
true mass is independent on luminosity, then we have p(me|m, l) = p(me|m). This means that the
SE mass is always unbiased in the mean regardless of luminosity. However, one may consider
such a situation where p(me|m, l) , p(me|m), which means the distribution of SE masses will be
modified once one limits on luminosity. This is an important issue, since essentially all statistical
quasar samples are flux-limited samples (except for heterogeneous samples, such as the local RM
AGN sample), and frequently the SE mass distribution in finite luminosity bins is measured and
interpreted.

Below I will explore this possibility and its consequences in detail. To help the reader under-
stand these issues, here is an outline of the discussion that follows: 1) I will first formulate the
basic equations to understand the (mathematical) origin of the uncertainty in SE mass, σSE; 2)
I will then provide physical considerations to justify this formulation; 3) The conditional proba-
bility distribution of SE mass at fixed true mass and luminosity p(me|m, l) is then derived, and I
demonstrate the two most important consequences: the luminosity-dependent bias, and the nar-
rower distribution of SE masses at fixed true mass and luminosity than the SE mass uncertainty
σSE; 4) I then discuss current observational constraints on the luminosity-dependent bias and
demonstrate its effect using a simulated flux-limited quasar sample.

1) Understanding the origin of the uncertainty σSE in SE masses

I will use Gaussians (lognormal) to describe most distributions and neglect higher-order mo-
ments, mainly because the current precision and our understanding of SE masses are not sufficient
for more sophisticated modeling. Assuming the distributions of luminosity and line width at given
true mass m both follow lognormal distributions, we can write such distributions as

l|m = 〈l〉m + G1(0, σl), w|m = 〈w〉m + G2(0, σw) , (10)

where notations are the same as in Eqn. (7), w ≡ log W, and 〈〉m indicates the expectation value at
m. The dispersions in luminosity and line width at this fixed true mass should be understood as
due to both variations in single objects (i.e., variability) and object-by-object variance. The SE
mass estimated using l and w are then (e.g., Eqn. 4):

me|m = bl + cw + constant , (11)

where the last term “constant” absorbs coefficient a and other constants from SE mass calibra-
tions. Now let us consider the following two scenarios:

A. In the ideal case where the SE method gives a perfect mass estimate, we have

G1(0, σl) = − c
b

G2(0, σw) , (12)



Quasar masses 87

i.e., the deviations in luminosity and line width from their mean values at given true mass
are perfectly correlated. The resulting me distribution thus peaks at m with zero width, i.e.,
me|m = m = b〈l〉m + c〈w〉m + constant.

B. In the realistic case, certain amount of the deviations in l and w from their mean values are
uncorrelated with each other (either intrinsic or due to measurement errors). Without loss
of generality, we can rewrite Eqn. (10) as

l|m = 〈l〉m + G1(0, σ′l) + G0(0, σcorr), w|m = 〈w〉m + G2(0, σ′w) − b
c

G0(0, σcorr) , (13)

where the total dispersions in the distributions of l and w are

σl =

√
σ′2l + σ2

corr , σw =

√
σ′2w + (σcorrb/c)2 . (14)

Eqn. (13) stipulates that some portions of the dispersions in l and w, described by σcorr, are
correlated and do not contribute to the dispersion (scatter) of me at m. On the other hand,
the remaining dispersions in l (σ′l) and in w (σ′w) are stochastic terms, and they combine to
cause the dispersion of me at m:

me|m = m + bG1(0, σ′l) + cG2(0, σ′w) = m + G(0, σSE) , (15)

where
σSE =

√
(bσ′l)

2 + (cσ′w)2 (16)

is the formal uncertainty in SE mass, i.e., the scatter in me at given true mass m.

Eqn. (13) through (16) provide a general description of SE mass error budget from luminosity
and line width, and form the basis of the following discussion. From now on I will only consider
the realistic case B.

2) Physical considerations on the variances σ′l , σ
′
w and σcorr

Most of the studies to date have implicitly assumed σ′l = 0 in Eqn. (13), with the few excep-
tions in e.g., Shen et al. (2008a), Shen & Kelly (2010) and Shen & Kelly (2012). σ′l = 0 imposes
a strong requirement that all the variations in luminosity are compensated by line width such that
the uncertainty in SE masses now completely comes from the σ′w part in line width dispersion.
While this is what we hope for the SE method, there are physical and practical reasons to expect
a non-zero σ′l , as discussed in, e.g., Shen & Kelly (2012). Specifically we have the following
considerations:

(a) the stochastic continuum luminosity variation and response of the BLR (hence the re-
sponse in line width) are not synchronized, as resulting from the time lag in the reverberation of
the BLR. The rms continuum variability on timescales of the BLR light-cross time is ∼ 0.05 dex
using the ensemble structure function in, e.g., MacLeod et al. (2010);
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(b) even with the same true mass, individual quasars have different BLR properties, and
presumably the measured optical-UV continuum luminosity is not as tightly connected to the
BLR as the ionizing luminosity. Both will lead to stochastic deviations of luminosity and line
width from the perfect correlation (source-by-source variation in the virial coefficient f , scatter
in the R − L relation, etc.). The level of this luminosity stochasticity is unknown but is at least
0.2 − 0.3 dex given the scatter in the R − L relation alone, and thus it is a major contributor to σ′l ;

(c) although not explicitly specified in Eqn. (13), there are uncorrelated measurement errors
in luminosity and line width; typical measurement error in luminosity for SDSS spectra (with
S/N∼ 5 − 10/pixel, e.g., see fig. 4 of Shen et al. 2011) is ∼ 0.02 dex (statistical only), but
increases rapidly at low S/N;

(d) and finally, what we measure as line width does not perfectly trace the virial velocity. This
is a concern for essentially all three lines, and for both of the two common definitions of line width
(FWHM and σline). Two particular concerns arise. First, single-epoch spectra do not provide a
line width that describes the reverberating part of the line only, thus some portion of the line width
may not respond to luminosity variations. Second, if a line is affected by a non-virial component
(say, CIV for instance), and if this component strengthens and widens when luminosity increases,
the total line width would not response to the luminosity variation as expected. As in (b), this
contribution to the uncompensated (by line width) luminosity variance σ′l is unknown, but could
be as significant as in (b).

One extreme of (d) would be that line width has nothing to do with the virial velocity except
for providing a mean value in the calibrations of Eqn. (4), as suggested by Croom (2011), i.e.,
σcorr = 0. In this case while the average SE masses are unbiased by calibration, the luminosity-
dependent SE mass bias at given true mass is maximum (see below). Note that this σcorr = 0 case
was already considered in Shen et al. (2008a) and Shen & Kelly (2010) when demonstrating the
luminosity-dependent bias, and is only a special case of the above generalized formalism.

On the other hand, σcorr > 0 would mean that line width does respond to luminosity variations
to some extent, justifying the inclusion of line width in Eqn. (4). This was indeed seen at least for
some local, low-luminosity objects, although not so much for the high-luminosity SDSS sample,
based on the tests described in §3.1.1; additional evidence is provided in, e.g., Kelly & Bechtold
(2007) and Assef et al. (2012), again for the low-luminosity RM AGN sample. Therefore, the
most realistic scenario is that at fixed true mass, some portions of the dispersions in luminosity (or
equivalently, Eddington ratio) and in line width are correlated with each other, and they cancel
out in the calculation of SE masses; the remaining portions of the dispersions in l and w are
stochastic in nature and they combine to contribute to the SE mass uncertainty (as in Eqn. 16). In
other words, we expect σ′l > 0, σ′w > 0, and σcorr > 0. For simplicity I take constant values for
these scatters in the following discussion, but it is possible that they depend on true BH mass.

3) The distribution of SE mass at fixed true mass and luminosity p(me|m, l)

Now that we have formulated the distributions of l, w and me at fixed m (e.g., Eqns. 11 and
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13), we can derive the conditional probability distribution of me at fixed m and l, p(me|m, l). It is
straightforward to show8 (again using Bayes’s theorem) that this distribution is also a Gaussian
distribution, with mean and dispersion:

〈me〉m,l = m +
bσ′2l

σ′2l + σ2
corr

(l − 〈l〉m) , σ2
ml =

(bσ′l)
2σ2

corr

σ′2l + σ2
corr

+ (cσ′w)2 . (17)

Therefore we can generate the distribution of me at fixed m and l as:

me|m, l = m + β(l − 〈l〉m) + G(0, σml) , (18)

where (using Eqns. 14 and 16)

β =
bσ′2l

σ′2l + σ2
corr

=
bσ′2l
σ2

l

, σ2
ml = σ2

SE − β2σ2
l = (bσ′l)

2 + (cσ′w)2 − β2σ2
l . (19)

Physicallyσml is the dispersion of SE mass at fixed true mass and fixed luminosity. The parameter
β denotes the magnitude (slope) of the luminosity-dependent bias, and we have9 0 < β < b, where
the lower and upper boundaries correspond to the two extreme cases σ′l = 0 and σcorr = 0. A
larger β means a stronger luminosity-dependent bias. Given the values of σ′l , σ

′
w and σcorr, and a

SE calibration (b and c), all the other quantities can be derived using Eqns. (14)-(19).

Fig. 5 shows a demonstration with σ′l = 0.6, σcorr = 0.1, σ′w = 0.15, b = 0.5 and c = 2. In this
example we have β = 0.49, σSE = 0.42, and σml = 0.3. The left two panels show the distributions
of luminosity and line width at fixed true mass, from the stochastic term (σ′l , σ

′
w), the correlated

term (σcorr) and the total dispersion (σl, σw). The right panel shows the distributions of SE masses
at this fixed true mass for all luminosities (black dotted line) and for fixed luminosities (green and
red dotted lines). The distributions of SE masses at fixed luminosity are both narrower and biased
compared with the distribution without luminosity constraint.

There are two important conclusions that can be drawn from Eqns. (17)-(19):

• At fixed true mass m, the SE mass me is over-/underestimated when luminosity l is higher/lower
than the average value at fixed m. This is the “luminosity-dependent bias” first introduced

8Here I give one possible derivation. For brevity I will drop m in all probability distributions, but it should be un-
derstood that all these distributions are at fixed m. Consider the σ′w = 0 case first, where we want to derive p(me |l).
Using Bayes’s theorem, p(me |l) ∝ p(me)p(l|me). We have p(me) ∝ e−(me−m)2/[2(bσ′l )2] (i.e., all variance in me comes
from σ′l since σ′w = 0), and p(l|me) ∝ e−[l−( me−m

b +〈l〉m)]2/(2σ2
corr) (i.e., l can only vary due to σcorr at fixed me). Therefore

p(me |l) ∝ e−(me−〈me〉m,l)2/(2σ′2ml), where 〈me〉m,l is the same as in Eqn. (17), and σ′2ml = (bσ′l )
2σ2

corr/(σ
′2
l + σ2

corr). Now add
back in the σ′w term, which will convolve p(me |l) with a Gaussian distribution. Then the general distribution p(me |l) for
arbitrary values of σ′w is also a Gaussian, with the same mean, but a dispersion that is broadened by cσ′w (i.e., the same
as in Eqn. 17).

9For the sake of completeness, I note that β > b could happen, if the line width were actually positively correlated to
luminosity in the σcorr terms in Eqn. (13). Of course such a scenario is counter-intuitive (regarding the virial assumption)
and thus unlikely, and it means one should not use line width at all in estimating SE masses.
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Figure 5. Simulated distributions of l (left), w (middle), and me (right) at fixed true mass m, following the
description in §3.3.2 (e.g., see Eqns. 13-19). The example shown here assumes b = 0.5, c = 2 in Eqn. (13),
e.g., the typical values for SE mass estimators. Left: The distribution of luminosity l ≡ log L. The black
dotted line indicates the dispersion in σ′l = 0.6, the cyan dashed line indicates the dispersion in σcorr = 0.1,

and the black solid line indicates the total dispersion in σl =

√
σ′2l + σ2

corr (which essentially overlaps
with the dotted line given that σl is dominated by σ′l ). Middle: The distribution of line width w ≡ log W.
The black dotted line indicates the dispersion in σ′w = 0.15, the cyan dashed line indicates the dispersion in
−σcorrb/c (i.e., the part that correlates with luminosity), and the black solid line indicates the total dispersion
in σw =

√
σ′2w + (σcorrb/c)2. Again the solid line and the dotted line are almost on top of each other. Right:

The distribution of SE mass me ≡ log MSE. The black dotted line indicates the total dispersion of me at fixed

m, σSE =
√

(bσ′l )
2 + (cσ′w)2 = 0.42. The green (red) dotted line indicates the distribution of me at fixed

m and fixed l = 〈l〉m − 0.5 (〈l〉m + 0.5), which is a Gaussian described by Eqns. (18)-(19). In this example
most of the dispersions in luminosity and line width are uncorrelated with each other, leading to a large
uncertainty in SE masses σSE = 0.42 dex. The inferred luminosity-dependent bias has a slope of β = 0.49.
The dispersion of me at fixed luminosity is only σml = 0.3 dex (Eqn. 19), much smaller than the uncertainty
in SE masses, σSE.

in Shen et al. (2008a) and subsequently developed in Shen & Kelly (2010) and Shen &
Kelly (2012). The magnitude of this bias, determined by β, depends on how much of the
dispersion in luminosity at fixed true mass is stochastic with respect to line width (i.e., not
compensated by responses in w).

• Secondly, the variance in SE masses at fixed true mass and fixed luminosity, σ2
ml, is gener-

ally smaller than the uncertainty of SE masses, σ2
SE, by an amount of (βσl)2. A simple way

to understand this is that the uncertainty (variance) of SE mass at fixed true mass comes
from the stochastic variance terms in both luminosity and line width. Therefore when one
reduces the variance in either luminosity or line width by fixing either variable, the variance
in SE mass is also reduced. This has important consequences in interpreting the observed
distribution of SE masses for quasars in flux-limited samples or in narrow luminosity bins.
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One cannot simply argue (as did in, e.g., Kollmeier et al. 2006; Steinhardt & Elvis 2010b)
that the uncertainty in SE masses is small because the distribution of SE masses for sam-
ples within restricted luminosity ranges is narrow. The example shown in Fig. 5 clearly
demonstrates that one can easily get a much narrower SE mass distribution at fixed true
mass and luminosity, than the nominal SE mass uncertainty σSE. On the other hand, if
enforcing σ′l = 0, then σSE = cσ′w < cσw, and there will be tension between the observed
narrow distribution in line width (e.g., Shen et al. 2008a; Fine et al. 2008), which indicates
σw . 0.15 dex for Mg , and the expectation that σSE > 0.3 dex.

Figure 6. A test on a non-zero β using RM data for NGC 5548. Plotted here is the dependence of the
virial products computed from 5100Å continuum luminosity and line width as a function of luminosity, for
NGC 5548 and for Hβ only, for FWHM (left) and σline (right), respectively. This form of the virial product
represents SE estimators with b = 0.5 and c = 2 in Eqn. (4), and I am using luminosity instead of time lag τ
in computing the virial product since I am testing SE mass estimators. The measurements were taken from
Collin et al. (2006), which are based on both mean and rms spectra during each monitoring period. Error
bars represent measurement errors. The error bars in luminosity have been omitted in the plot for clarity.
The continuum luminosity has been corrected for host starlight using the correction provided by Bentz et al.
(2009a). The black and blue dashed lines are the best linear-regression fits using the Bayesian method
of Kelly (2007), for measurements based on mean and rms spectra, respectively. The residual correlation
between the virial product and luminosity cannot be completely removed, and a positive β ∼ 0.2 − 0.6 is
inferred in all cases, although the uncertainty in β is too large to rule out a zero β at > 3σ significance.
Figure adapted from Shen & Kelly (2012).

4) Observational constraints on the luminosity-dependent bias

The exact value of β is difficult to determine observationally, although some rough estimates
can be made based on monitoring data of single objects, or samples of AGNs with known “true”
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Figure 7. Tests of a non-zero β using two-epoch spectroscopy from SDSS (She, Shen, et al., in preparation).
The data and notations are the same as in Fig. 1. The SE masses remain more or less constant as luminosity
changes only for the low-luminosity and low-z sample based on Hβ. For the high-luminosity and high-z
samples based on Mg  and CIV, a luminosity-dependent bias in SE masses is inferred, with an error slope
of β ∼ 0.5.
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mass (using RM masses or MBH − σ∗ masses). The former test constrains the stochasticity in
single objects, while the latter test explores object-by-object variance. Using the intensively
monitored Hβ RM data for a single object, NGC 5548, Shen & Kelly (2012) tested the possibility
of a non-zero β. The continuum luminosity of this object varied by ∼ 0.5 dex within a decade,
providing a test on how well line width varies in accordance to luminosity variations for a single
object and for a single line. Fig. 6 shows the change of SE masses as a function of the mean
continuum luminosity in each monitoring year, computed using both FWHM and σline from both
mean and rms spectra in each year. There is an average trend of increasing the SE masses as
luminosity increases in all four cases, although the trend is less obvious forσline-based SE masses.
The inferred value of β, using the linear regression method in Kelly (2007), is ∼ 0.2−0.6, although
the uncertainty in β is generally too large to rule out a zero β at > 3σ significance.

A similar test is based on the repeated spectroscopy in SDSS (see discussion in §3.1.1). Al-
though most objects do not have a large dynamic range in luminosity variations in two epochs, the
large number of objects allows a reasonable determination of the average trend of SE masses with
luminosity, for the whole population of quasars. In addition, we want to include measurement
uncertainties (both statistical and systematic), which allows us to make realistic constraints, as
measurement errors will always be present. As shown in Fig. 1, the line width from single-epoch
spectra does not seem to respond to luminosity variations except for low-luminosity objects based
on Hβ, as expected from the physical/practical reasons I described above. I plot the changes in SE
masses as a function of luminosity changes in Fig. 7. From this figure I estimate β ∼ 0.5 for the
high-L samples based on Mg  and CIV, and β ∼ 0 for the low-L sample based on Hβ (She, Shen
et al., in preparation). The difference in the low-L (low-z) and high-L (high-z) samples could be
due to a luminosity effect, e.g., the correspondence between line width and luminosity variations
is poorer at higher luminosities, or due to the difference between Hβ and the other two lines (She,
Shen et al., in preparation).

Shen & Kelly (2012) also attempted to constrain β using forward Bayesian modeling of
SDSS quasars in the mass-luminosity plane (see §4.2). While the results suggested a non-zero
β ∼ 0.2 − 0.4, the constraints were not very strong (see their fig. 11). Combining all these tests,
we can conclude the following: β is probably smaller than ∼ 0.5 (i.e., line width still plays some
physical role in SE mass estimates) but unlikely zero, although the exact value is uncertain. The
value of β likely also depends on the specific line. More monitoring data of individual AGNs,
and/or a substantially larger sample of AGNs with RM mass (or MBH − σ∗ masses) spreading
enough dynamic range in luminosity at fixed mass, will be critical in better constraining β.

The effects of the luminosity-dependent bias on flux-limited samples are discussed inten-
sively in, e.g., Shen et al. (2008a), Shen & Kelly (2010) and Shen & Kelly (2012). Here I use a
simple simulation of a power-law true BH mass distribution, dN/dMBH ∝ M−3.6

BH , to demonstrate
these effects in Fig. 8. This steep true mass distribution was chosen to reproduce the distribution
at the high-mass end for SDSS quasars (Shen et al. 2008a), which is certainly not appropriate at
the low-mass end. I use the same example as in Fig. 5 for all the dispersion terms in luminosity
and line width at fixed true mass. The true masses are distributed between 5×107 M� and 1010 M�
according to the specified power-law distribution. The mean luminosity at fixed m is determined
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Figure 8. A simulated population of BHs with true masses MBH within 5 × 107 − 1010 M�, distributed as a
power-law dN/dMBH ∝ M−3.6

BH . I have assumed a constant Eddington ratio λ = 0.05 to generate the mean
luminosity 〈l〉m at fixed true mass. I then used the dispersions specified by the example shown in Fig. 5 to
generate instantaneous luminosity and SE masses. The resulting distributions in luminosity, line width and
SE masses are consistent with those for the SDSS quasar sample (e.g., Shen et al. 2011). The black contours
(local point density contours) and points show the distribution in the me − m plane. The green line shows
the unity relation me = m. As expected, there is substantial scatter in me at fixed m due to the uncertainty in
SE masses (σSE = 0.42 dex). The red contours and points show the distribution for a subset of quasars with
l > 〈l〉m=8.3, the corresponding mean luminosity at MBH = 2 × 108 M� (marked by the green circle). The SE
masses are biased high from their true masses for this flux-limited sample (i.e., most points are above the
unity relation) due to the substantial luminosity-dependent bias, the large dispersion in luminosity at fixed
true mass, and the bottom-heavy true mass distribution in this example.

assuming a constant Eddington ratio λ = 0.05. Then the instantaneous luminosity and SE mass
at each true mass m are generated using Eqns. (13)-(19). The resulting distribution in the m − me

plan is shown in black contours and points in Fig. 8, where I also show the distribution of a flux-
limited (luminosity-limited) subset of BHs with l > 〈l〉m=8.3, the mean luminosity corresponding
to MBH = 2 × 108 M�. The simulated distributions in luminosity, line width and SE virial masses
are consistent with those for SDSS quasars when a similar flux limit is imposed on the simulated
BHs. It is clear from Fig. 8 that for the flux-limited subset, the SE masses are biased high from
the true masses. This is because in this simulation we have β = 0.49, which implies a significant
luminosity-dependent bias at fixed true mass. Then the bottom-heavy BH mass distribution and
the large scatter of luminosity at fixed true mass lead to more overestimated SE masses scattered
upward than underestimated ones scattered downward, causing a net sample bias in SE masses
(Shen et al. 2008a; Shen & Kelly 2010, 2012).
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4. Applications to statistical quasar samples

Despite the many caveats of SE mass estimators discussed above, they have been extensively
used in recent years to measure BH masses in quasar and AGN samples over wide luminosity
and redshift ranges, given their easiness to use. These applications include the Eddington ratio
distributions of quasars, the demographics of quasars in terms of the black hole mass function
(BHMF), the correlations between BH mass and host properties, and BH mass dependence of
quasar properties. It is important to recognize, however, that these BH mass estimates are not true
masses, and the uncertainty in these mass estimates has dramatic influences on the interpretation
of these measurements.

Below I discuss several major applications of the SE virial mass estimators to statistical
quasar samples. Other applications of these SE masses, such as quasar phenomenology, while
equally important, will not be covered here.

4.1 Early growth of SMBHs

One of the strong drivers for developing the SE virial mass technique is to estimate BH masses
for high redshift quasars to better than a factor of ten accuracy, and to study the growth of SMBHs
up to very high redshift (e.g., Vestergaard 2004). Such investigations have been greatly improved
in the era of modern, large-scale spectroscopic surveys. The SDSS survey has been influential
on this topic by providing more than tens of thousands of optical quasar spectra and SE mass
estimates up to z ∼ 5 (e.g., McLure & Dunlop 2004; Netzer & Trakhtenbrot 2007; Shen et al.
2008a, 2011; Labita et al. 2009a,b). On the other hand, deeper and dedicated optical and near-IR
spectroscopic programs are probing the SMBH growth to even higher redshift (e.g., Jiang et al.
2007; Kurk et al. 2007; Willott et al. 2010; Mortlock et al. 2011).

In Fig. 9 I show a compilation of SE virial mass estimates for quasars over a wide redshift
range 0 < z . 7 from different studies. The black dots show the SE masses from the SDSS DR7
quasar sample (Schneider et al. 2010; Shen et al. 2011), which were estimated based on Hβ for
z < 0.7, Mg  for 0.7 < z < 1.9 and CIV for 1.9 < z < 5. As discussed in §3.1.7, the reliability of
CIV-based SE masses for the high-z and high-luminosity quasars has been questioned, and several
studies have obtained near-IR spectra for z & 2 quasars to get Hβ-based (filled symbols) and
Mg -based (open symbols) SE masses at high redshift. Albeit with considerable uncertainties
and possible biases in individual SE mass estimates (all on the order of a factor of a few), these
studies show that massive, & 109 M� BHs are probably already in place by z ∼ 7, when the age of
the Universe is only less than 1 Gyr. The abundance of these massive and active BHs then evolves
strongly with redshift, showing the rise and fall of the bright quasar population with cosmic time.

One outstanding question regarding the observed earliest quasars is how they could have
grown such massive SMBHs given the limited time they have, which is a non-trivial problem
since the discoveries of z > 4 quasars (e.g., Turner 1991; Haiman & Loeb 2001). One concern
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is if these highest redshift quasars have their luminosities magnified by gravitational lensing or if
their luminosities are strongly beamed (e.g., Wyithe & Loeb 2002; Haiman & Cen 2002), which
will affect earlier estimates of their BH masses using the Eddington-limit argument. The lensing
hypothesis will also lead to overestimated virial BH masses. However later deep, high-resolution
imaging of z > 4 quasars with HST did not find any multiple images around these objects (e.g.,
Richards et al. 2004b, 2006b), rendering the lensing hypothesis highly unlikely (e.g., Keeton
et al. 2005). Strong beaming can also be ruled out based on the high values of the observed
line/continuum ratio of these high-redshift quasars (e.g., Haiman & Cen 2002).

Given the e-folding time introduced in §1, te = 4.5 × 108 ε
λ(1−ε) yr, and a seed BH mass Mseed

at an earlier epoch zi, the final mass at z f ∼ 6 is

MBH = Mseed exp
(

t f − ti
te

)
, (20)

where t f and ti are the cosmic age at z f and zi, respectively.

Assuming continuous accretion with constant radiative efficiency ε and luminosity Eddington
ratio λ and without mergers, I showed in Fig. 9 three different growth histories from a seed BH
at higher redshift. The solid lines are for a seed BH at z = 20 and λ = 1, i.e., Eddington-limited
accretion; the dashed lines are for a seed BH at z = 30 and λ = 1; the dotted lines are for a
seed BH at z = 20 and λ = 1.5, i.e., mildly super-Eddington accretion. For each model I used
three seed BH mass, Mseed = 10, 20, 100 M�, which encloses the reasonable ranges of predicted
remnant BH mass from the first generation of stars (Pop III stars, for a review see, e.g., Bromm
et al. 2009). Then it is clear from Fig. 9 that, if the accretion is Eddington-limited, it is difficult to
grow & 109 M� BHs at z ∼ 6 from a Pop III remnant seed BH at z ∼ 20−30 (where such first stars
were formed out of ∼ 106 M� halos, corresponding to ∼ 3 − 4σ peaks in the density perturbation
field). On the other hand, if allowing mildly super-Eddington accretion, then a ∼ 109 M� BH
can be readily formed at z ∼ 7 from a large Pop III star remnant Mseed ∼ 100 M�, although
more recent simulations suggest somewhat lower masses of Pop III stars due to possible effects
of clump fragmentation and/or radiative feedback (e.g., Turk et al. 2009; Hosokawa et al. 2011;
Stacy et al. 2012), and hence a lower typical value of the remnant mass of less than tens of solar
masses. Mildly super-Eddington accretion (up to λ ∼ a few) could happen, for instance, if the
radiation and density fields of the accretion flow are anisotropic and most of the accretion flow
is not impeded by the radiation force. Mergers between BHs at high-z can also help with the
required growth if the coalesced BH is not ejected from the halo by the gravitational recoil from
the merger. The main challenge here is whether or not such critical accretion can maintain stable
and uninterrupted for the entire time (e.g., Pelupessy et al. 2007). But in any case, it is quite
likely that the observed z > 6 quasars are all born in rare environments of the early Universe,
thus extreme conditions (such as large gas density, high merger rate, etc.) may have facilitated
their growth. Indeed, some theoretical studies can successfully produce such massive BHs at
z ∼ 6 growing from a typical Pop III remnant BH seed without super-Eddington accretion (e.g.,
Yoo & Miralda-Escude 2004; Li et al. 2007; Tanaka & Haiman 2009). But the detailed physics
(accretion rate, mergers, BH recoils, etc.) regarding the formation of these earliest SMBHs is still
uncertain to some large extent.



Quasar masses 97

Figure 9. A compilation of SE virial mass estimates from different samples of quasars. The black dots are
the SE masses for SDSS quasars from Shen et al. (2011), based on Hβ (z < 0.7), Mg  (0.7 < z < 1.9)
and CIV (z > 1.9). Given the potential caveats of CIV-based SE masses, near-IR spectroscopy has been
undertaken to estimate SE masses for z & 2 quasars based on Hβ and Mg . The different large symbols
are for SE masses based on Hβ (filled symbols) and Mg  (open symbols) from Shemmer et al. (2004, filled
squares), Netzer et al. (2007, filled circles), Trakhtenbrot et al. (2011, open circles), Kurk et al. (2007,
open triangles), Willott et al. (2010, open squares), and Mortlock et al. (2011, open circle with cross). Bear
in mind the large uncertainty associated with individual SE masses and potential biases. I also show the
predicted SMBH growth at z > 6 based on simple, continuous accretion models with constant Eddington
ratio λ and radiative efficiency ε = 0.1, as described in Eqn. (20). The solid lines are Eddington-limited
(λ = 1) growth models from a seed BH at z = 20; the dashed lines are λ = 1 growth models from a seed
BH at z = 30; the dotted lines are mildly super-Eddington (λ = 1.5) growth models from a z = 20 seed BH.
For each model I used three seed BH masses, Mseed = 10, 20, 100 M� to accommodate reasonable ranges of
seed BH mass from a Pop III star remnant at z ∼ 20 − 30.

While this is not seen as an immediate crisis, there are multiple pathways to make it much
easier to grow & 109 M� SMBHs at z & 6 by boosting either the accretion rate or the seed BH
mass (for a recent review, see, e.g., Volonteri 2010; Haiman 2012). These recipes include:

1) supercritical accretion (e.g., Volonteri & Rees 2005) where the accretion rate ṀBH greatly
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exceeds the Eddington limit with a canonical radiative efficiency ε = 0.1. One possibility is that
the radiation is trapped in the accretion flow (e.g., Begelman 1979; Wyithe & Loeb 2012), leading
to a very low ε and hence a much shorter e-folding time. Note that in such a radiatively inefficient
accretion flow (RIAF), the luminosity is still bounded by the Eddington limit;

2) rapid formation of massive (∼ 103 − 105 M�) BH seeds from direct collapse of primordial
gas clouds (e.g., Bromm & Loeb 2003; Begelman et al. 2006; Agarwal et al. 2012) or from a
hypothetical supermassive star or “quasi-star” (e.g., Shibata & Shapiro 2002; Begelman et al.
2008; Johnson et al. 2012) at high redshift. Supercritical accretion may also be expected in some
of these models to grow to the final seed BH mass, which then continue to accrete in the normal
way. By increasing Mseed it requires much less e-folds to grow to a > 109 M� BH. Another
possible route to produce massive BH seeds up to ∼ 103 M� is by the runaway collisional growth
in a dense star cluster formed in a high-redshift halo (e.g., Omukai et al. 2008).

4.2 Quasar demographics in the mass-luminosity plane

BH mass estimates provide an additional dimension in the physical properties of quasars. The dis-
tribution of quasars in the two-dimensional BH mass-luminosity (M−L) plane conveys important
information about the accretion process of these active SMBHs. The first quasar mass-luminosity
plane plot was made by Dibai in the 1970s as mentioned in §2.2. Over the years, such a 2D plot
has been repeatedly generated based on increasingly larger quasar samples and improved BH
mass estimates (e.g., Wandel et al. 1999; Woo & Urry 2002; Kollmeier et al. 2006; Shen et al.
2008a; Shen & Kelly 2012), and the much better statistics now allows a more detailed and deeper
look into this quasar mass-luminosity plane.

In what follows I will mainly focus on the SDSS quasar sample because this is the largest and
most homogeneous quasar samples to date. But as emphasized in Shen & Kelly (2012), the SDSS
sample only probes the bright-end of the quasar population, and to probe the mass and accretion
rate of the bulk of quasars it is necessary to assemble deeper spectroscopic quasar samples (e.g.,
Kollmeier et al. 2006; Gavignaud et al. 2008; Trump et al. 2009; Nobuta et al. 2012).

Since I have emphasized the distinction between true BH masses and SE mass estimates, I
shall use the term “observed” or “measured” to refer to distributions based on SE mass estimates,
to distinguish them from “true” distributions. Fig. 10 shows such an observed mass-luminosity
plane from the same collection of quasars as shown in Fig. 9. Note that these samples are flux-
limited to different magnitudes, and several high-redshift samples based on Hβ or Mg  (i.e.,
large symbols) have a higher flux-limit than the SDSS. I also used slightly different values of
bolometric corrections to convert continuum luminosity to bolometric luminosity for those non-
SDSS samples. From this plot we see that the observed distributions of quasars are bounded
between constant Eddington ratios 0.01 . λ . 1, with median values of 〈λ〉 ∼ 0.1 − 0.3 for
SDSS quasars, and somewhat higher values for the z & 5 samples. The dispersion in Eddington
ratio in these flux-limited samples is typically ∼ 0.3 dex. Similar distributions were observed
by, e.g., Kollmeier et al. (2006). However, as demonstrated in, e.g., Shen et al. (2008a); Kelly
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et al. (2009a, 2010); Shen & Kelly (2012); Kelly & Shen (2013), the observed distribution suffers
from the sample flux limit such that low-Eddington ratio objects have a lower probability being
selected into the sample, and from the uncertainties and statistical biases of SE masses relative
to true masses. The selection effect due to the flux limit and errors in SE masses dramatically
modify the intrinsic distribution in the mass-luminosity plane, and must be taken into account
when interpreting the observations.

The best approach to tackle these issues is a forward modeling, in which one specifies an
underlying distribution of true masses and luminosities and map to the observed mass-luminosity
plane by imposing the flux limit and relations between SE virial masses and true masses (e.g.,
Shen et al. 2008a; Kelly et al. 2009a, 2010). Then the comparisons between model and observed
distributions constrain the model parameters with standard Markov Chain Monte Carlo (MCMC)
techniques and Bayesian inference. This is a complicated and model-dependent problem, and the
best efforts so far are the studies by Shen & Kelly (2012) and Kelly & Shen (2013), building on
earlier work by Shen et al. (2008a), Kelly et al. (2009a) and Kelly et al. (2010). Alternatively,
Schulze & Wisotzki (2010) developed a maximum likelihood method (also a forward modeling
method), which accounts for the effect of the flux limit, but not the errors in SE masses (although
the SE errors can be incorporated in such a framework as well). This maximum likelihood method
was subsequently adopted in Nobuta et al. (2012) when modeling a faint quasar sample (again,
SE errors not taken into account). Most other quasar mass demographic studies, however, did
not explicitly model either of these effects (e.g., Greene & Ho 2007; Vestergaard et al. 2008;
Vestergaard & Osmer 2009).

Shen & Kelly (2012) used forward modeling with Bayesian inference to model the ob-
served distribution in the mass-luminosity plane of SDSS quasars, taking into account a possible
luminosity-dependent bias (i.e., β , 0, see §3.3.2) to be constrained by the data. The flux limit
of the SDSS sample is taken into account using published selection functions of SDSS quasars
(Richards et al. 2006a). Based on this approach, Shen & Kelly (2012) found evidence for a non-
zero β, although the constraints on β are weak and cannot rule out a null value. Kelly & Shen
(2013) used a more flexible model parametrization to describe the underlying true distributions
(in BH mass and Eddington ratio), but fixed β = 0 to test how sensitively the results in Shen &
Kelly (2012) depend on different model parameterizations. They found that the main conclusions
are generally consistent, although the results in the latter work are less constrained than in the
former, due to the more flexible models. Both studies revealed that based on the SDSS quasar
sample alone, it is difficult to constrain the BHMF to better than a factor of a few at most red-
shifts. This is both because the SDSS sample only probes the tip of the active SMBH population
at high-z, and to a larger extent, because the errors of SE masses are poorly understood. However,
there are some solid conclusions from the two studies:

1. The observed distribution in the mass-luminosity plane is quite different from the intrinsic
distribution, due to the flux limit and uncertainties in SE masses. This is demonstrated in
Fig. 11, which shows a quasar M − L plane at z = 0.6 based on the modeling of SDSS
quasars by Shen & Kelly (2012). In this plot luminosity L is the restframe 2500Å mono-
chromatic luminosity, and the bolometric luminosity is Lbol ∼ 5L. The red contours are the
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Figure 10. The observed quasar mass-luminosity plane based on SE masses for quasars in a wide range of
redshifts (0 < z . 7) from the samples compiled in Fig. 9. The dots are from the SDSS sample in Shen et al.
(2011), for quasars at z < 0.7 (Hβ-based SE masses; green), 0.7 < z < 1.9 (Mg -based SE masses; cyan),
and 1.9 < z < 5 (CIV-based SE masses; red). The large symbols are from various z & 2 samples using Hβ
or Mg -based SE masses. I have used slightly different bolometric corrections for these non-SDSS samples
from those used in the original papers. The SDSS quasars have Eddington ratios 0.01 . λ . 1 with a mean
value of 〈λ〉 ∼ 0.1 − 0.3, while the other high-z samples have even higher Eddington ratios. Given the flux-
limited nature of all these samples and the errors in SE masses, the observed Eddington ratio distribution is
highly biased relative to the intrinsic distribution (see §4.2 for details).



Quasar masses 101

7.0 7.5 8.0 8.5 9.0 9.5
log MBH/log MBH,vir [MO •]

42.0

42.5

43.0

43.5

44.0

44.5

45.0

45.5
lo

g 
L

 [
er

g 
s-1

]

Figure 11. The simulated mass-luminosity plane at z = 0.6 based on the modeling of SDSS quasars in
Shen & Kelly (2012), which extends below the flux limit (the black horizontal line). The y-axis plots the
restframe 2500Å monochromatic luminosity, and the bolometric luminosity is Lbol ∼ 5L. The red contour
is the distribution based on true BH masses and is determined by the model BHMF and Eddington ratio
distribution in Shen & Kelly (2012). The black contour is the distribution based on Hβ SE BH masses. The
flux limit only selects the most luminous objects into the SDSS sample (which are closer to the Eddington
limit), and the distribution based on SE virial BH masses is flatter than the one based on true masses due to
both the scatter σml and a non-zero β ∼ 0.2 for this redshift bin (see §3.3.2 and Shen & Kelly 2012).

true distribution of quasars, while the black contours are the measured distribution based
on Hβ SE virial masses. The black horizontal line indicates the flux limit of the sample,
hence only objects above this line would be selected in the SDSS sample, which form the
observed distribution. The flux limit only selects the most luminous objects into the SDSS
sample, missing the bulk of low Eddington ratio objects; even the highest mass bins are
incomplete due to the flux limit. The distribution based on SE virial BH masses is flatter
than the one based on true masses due to the scatter and luminosity-dependent bias of these
SE masses.

For the observed distribution based on SE masses, there are fewer objects towards larger
SE masses and luminosity. This was interpreted as the lack of massive black holes ac-
creting at high Eddington ratios, or the so-called “sub-Eddington boundary” claimed by
Steinhardt & Elvis (2010a). However, such a feature is caused by the flux limit and er-
rors in SE masses, and there is no evidence that high-mass quasars on average accrete
at lower Eddington ratios, not for broad-line objects at least10. This conclusion seems to

10There could be a significant population of high-mass, non-broad-line AGNs accreting at low Eddington ratios, pos-
sibly via a different accretion mode than broad line quasars.
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be robust against different model parameterizations of the underlying true distributions in
the forward modeling approach (Kelly & Shen 2013). Of course here I am assuming no
systematic biases in these FWHM-based SE masses measured in Shen et al. (2011). It is
possible that σline-based SE masses are more reliable, in which case there would be a “ro-
tation” in the mass-luminosity plane using σline-based SE masses, as discussed in §3.1.3.
This also tends to reduce this “sub-Eddington boundary” in the observed plane (e.g., Rafiee
& Hall 2011a,b), but a full modeling taking into account both the flux limit and SE mass
errors is yet to be performed with σline-based SE masses (i.e., the interpretation by Rafiee
& Hall is still based on “observed” rather than true distributions).

2. The intrinsic Eddington ratio distribution at fixed true mass is broader (∼ 0.4 dex) than
the observed Eddington ratio distribution in flux-limited samples (. 0.3 dex), and the
mean Eddington ratio in the flux-limited samples based on SE masses is higher11 than
the mean Eddington ratio for all active SMBHs (most of which are not detected). This is
consistent with earlier studies by Shen et al. (2008a) and Kelly et al. (2010). Some deeper
spectroscopic surveys indeed start to find these lower Eddington ratio objects (e.g., Babić
et al. 2007; Gavignaud et al. 2008; Nobuta et al. 2012), and are consistent with the model-
extrapolated distributions from Shen & Kelly (2012) and Kelly & Shen (2013); however,
since in general these deep data are noisier and the selection function is less well quantified
than SDSS, care must be paid when inferring the dispersion in Eddington ratios for these
faint quasars.

The next step to utilize this quasar mass-luminosity plane is to measure the abundance of
quasars in this plane, and study its redshift evolution. This is a much more powerful way to study
the cosmic evolution of quasars than traditional 1D distribution functions such as the luminosity
function (LF) and the quasar BHMF.

I demonstrate the power of the mass-luminosity plane in quasar demographic studies in Fig.
12. This is the same simulated, true quasar M − L plane at z = 0.6 as in Fig. 11, using the
models in Shen & Kelly (2012) constrained using SDSS quasars. The 2D density (i.e., abundance)
of quasars in this plane is shown in the color-coded contours. The traditional LF and BHMF
(shown in the right panels) are then just the projection onto each axis. In the right panels I also
demonstrate the differences between using true BH masses and SE virial masses, as well as the
effect of the sample flux limit. It is clear from this demonstration that the 1D distribution functions
lose information by collapsing on one dimension, and a better way to study the demography of
quasars is to measure their abundance in 2D, since the mass and luminosity of a quasar are
physically connected by the Eddington ratio. The ultimate goal is to study the evolution of the
quasar density in the M − L plane as a function of time. Recent studies have started to work in

11These SE masses are on average overestimated due to the luminosity-dependent bias discussed in §3.3.2, which
tends to underestimated the true Eddington ratios. But the mean observed Eddington ratio based on SE masses of the
flux-limited sample is still higher than the mean value for all quasars extending below the flux limit (see fig. 19 of Shen
& Kelly 2012).
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Figure 12. An example of the forward modeling of quasar demographics in the mass-luminosity plane
by Shen & Kelly (2012), modeled at z = 0.6. Left: The simulated mass-luminosity plane (with true BH
masses), which extends below the SDSS flux limit (the black horizontal line). Shown here is the comoving
number density map [Φ(MBH, L)], where only regions with Φ(MBH, L) > 10−6.5 Mpc−3 log L−1 log M−1

BH
are shown. The two diagonal lines indicate constant Eddington ratios of 1 and 0.01. The flux limit only
selects the most luminous objects into the SDSS sample. Right: Projections of the 2D distribution onto
the luminosity and BH mass axes, i.e., the LF (upper right) and BHMF (bottom right) of quasars at
z = 0.6. The points are binned observational data and the lines are best-fit models: the magenta lines
show the results for all broad-line quasars (corrected for the flux limit) and the green lines show those for
the flux-limited sample. The thickness of the lines indicates the 1σ model uncertainty. I have used the
i-band absolute magnitude instead of bolometric luminosity in presenting the LF, and I have also taken into
account the difference between true BH masses (colored lines) and SE virial BH masses (points). This
forward-modeling framework accounts for the selection incompleteness in BH mass due to the flux limit,
and the uncertainties in SE virial BH mass estimates, and can constrain the 2D distribution down to ∼ 3
magnitudes fainter than the flux limit (Shen & Kelly 2012). However, to make more robust constraints at
the faint end, deeper quasar samples are highly desirable.

The 2D distribution of quasars offers significantly more information on the evolution of quasars than
1D distributions (i.e., LF or BHMF) alone. Specifically if we focus on snapshots of the mass-luminosity
plane in short time intervals (e.g., shorter than typical quasar lifetime), then objects will move along certain
evolutionary tracks in the plane, determined by the evolution of Eddington ratio (possibly also coupled with
the change of the radiative efficiency as accretion rate evolves). This evolution in the mass-luminosity plane
can be modeled in great detail, and compared with either analytical models or numerical simulations of
SMBH growth. This is somewhat similar to the simple arguments in the quasar LF literature (such as the
“pure luminosity evolution” model), but the diagnostic capabilities of the mass-luminosity plane would be
far more powerful and self-consistent in terms of SMBH growth and light curve evolution.
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this direction (e.g., Shen & Kelly 2012; Kelly & Shen 2013), although deeper quasar samples and
a better understanding of SE mass errors are needed to utilize the full power of the M − L plane.

To summarize, the quasar mass-luminosity plane has great potential in studying quasar evo-
lution, and efforts have been underway to investigate this plane in detail (e.g., Steinhardt & Elvis
2010a,b; Steinhardt et al. 2011; Steinhardt & Elvis 2011; Shen & Kelly 2012; Kelly & Shen
2013). However, it should always be kept in mind that the “observed” distribution in the M − L
plane is not the true distribution. I strongly discourage direct interpretations of the observed dis-
tributions based on SE masses and flux-limited data, which can easily lead to superficial or even
spurious results.

4.3 Evolution of BH-bulge scaling relations

Another important application of SE virial mass estimators is to study the MBH−host scaling rela-
tions in broad line AGNs, and to probe the evolution of these relations at high redshift. Measuring
the MBH-host relations in low redshift quasars and AGNs has been done using both RM masses
and SE masses (e.g., Laor 1998; Greene & Ho 2006; Bentz et al. 2009c; Xiao et al. 2011). As-
suming some virial coefficient 〈 f 〉, these studies were able to add active objects in these scaling
relations and extend the dynamic range in BH mass.

In the past a few years, there have been a huge amount of effort to quantify the evolution of
these scaling relations up to z ∼ 6, by measuring host properties in broad-line quasars. Some
studies directly measure the galaxy properties by decomposing the quasar and galaxy light in
either imaging or spectroscopic data (e.g., Treu et al. 2004; Peng et al. 2006a,b; Woo et al. 2006;
Treu et al. 2007; Woo et al. 2008; Shen et al. 2008b; Jahnke et al. 2009; McLeod & Bechtold
2009; Decarli et al. 2010; Merloni et al. 2010; Bennert et al. 2010; Cisternas et al. 2011; Targett
et al. 2012); other studies use indirect methods to infer galaxy properties, such as using the narrow
emission line width to infer bulge velocity dispersion (e.g., Shields et al. 2003, 2006; Salviander
et al. 2007; Salviander & Shields 2012). Molecular gas (using CO tracers) has also been detected
in the hosts of z ∼ 6 quasars, allowing rough estimates on the host dynamical mass of these
highest redshift quasars (e.g., Walter et al. 2004; Wang et al. 2010, and references therein). In
all cases the BH masses were estimated using the SE methods based on different broad emission
lines. With a few exceptions, most of these studies claim an excess in BH mass relative to bulge
properties either in the MBH − σ∗ relation or in the MBH − Mbulge/Lbulge relation, and advocate a
scenario where BH growth precedes spheroid assembly.

It is worth noting that measuring host galaxy properties of Type 1 AGNs could be challeng-
ing, and systematic biases may arise when measuring the stellar velocity dispersion from spectra
(e.g., Bennert et al. 2011), or host luminosities from image decomposing (e.g., Kim et al. 2008;
Simmons & Urry 2008). Conversions from measurables (such as host luminosity) to derived
quantities (such as stellar mass) are also likely subject to systematics, especially for low-quality
data. Thus careful treatments are required to derive unbiased host measurements.
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On the other hand, it is also worrisome that the errors in SE BH mass estimates may affect
the observed offset in the BH scaling relations at high-redshift. As discussed extensively in §3,
there are both physical and practical concerns that the applications of locally-calibrated SE esti-
mators to high-redshift quasars may cause systematic biases. Even if the extrapolations are valid,
the luminosity-dependent bias discussed in §3.3.2 may still lead to an average overestimation
of quasar BH masses in flux-limited surveys. Shen & Kelly (2010) studied the impact of the
luminosity-dependent bias on flux-limited quasar samples, and found an “observed” BH mass
excess of ∼ 0.2 − 0.3 dex for Lbol & 1046 erg s−1 with a reasonable value of σ′l = 0.4 dex (see
§3.3.2 for details). This sample bias using SE mass estimates becomes larger (smaller) at higher
(lower) threshold quasar luminosities.

Another statistical bias was pointed out by Lauer et al. (2007), which is at work even if there is
no error in BH mass estimates. The basic idea is that since there is an intrinsic scatter between BH
mass and bulge properties (∼ 0.3 dex for the local sample), and since the distribution functions
in BH mass and galaxy properties are expected to be bottom-heavy, a statistical excess (bias) in
the average BH mass relative to bulge properties arises when the sample is selected based on BH
mass (or based on quasar luminosity, assuming the Eddington ratio is constant). This is similar
to the Malmquist-type bias discussed in §3.3.1. One can work out (e.g., Lauer et al. 2007; Shen
& Kelly 2010) that the BH mass offset introduced by this bias depends on the slope of the galaxy
distribution function, as well as the scatter in the BH-host scaling relations. For simple power-law
models of the galaxy distribution function on property S with a slope γs, and lognormal scatter
σµ at fixed galaxy property S , this bias takes a similar form as the Malmquist-type bias in §3.3.1:

∆ log MBH,Lauer = − ln(10)γsσ
2
µ/C , (21)

where C is the coefficient of the mean BH-host property (S ) scaling relation log MBH = C log S +

C′. Thus if the intrinsic scatter in the BH-host scaling relations increases with redshift, then
this statistical bias alone can contribute a significant amount to the observed BH mass offset in
the high-redshift samples (e.g., Merloni et al. 2010). A larger intrinsic scatter in these scaling
relations at high redshift is expected, if the tightness of the local BH-host scaling relations is
mainly established via the hierarchical merging of less-correlated BH-host systems at higher
redshift (e.g., Peng 2007; Hirschmann et al. 2010; Jahnke & Macció 2011). The real situation is
of course more complicated, and one must consider a realistic Eddington ratio distribution at fixed
BH mass and the effect of the flux limit. There could also be other factors that may complicate
the usage of AGNs to probe the evolution of these BH-host scaling relations, as discussed in
detail in Schulze & Wisotzki (2011). But overall a BH mass excess due to the Lauer et al. bias is
expected when select on quasar luminosity. An interesting corollary is that a deficit in BH mass
is expected if the sample is selected based on galaxy properties. This may explain the findings
that high-redshift submillimeter galaxies (SMGs) tend to have on average smaller BHs relative to
expectations from local BH-host scaling relations (e.g., Alexander et al. 2008).

The Lauer et al. bias caused by the intrinsic scatter in BH-host scaling relations works in-
dependently with the luminosity-dependent bias caused by errors in SE masses, so together they
can contribute a substantial (or even full) amount of the observed BH mass excess at high redshift
(e.g., Shen & Kelly 2010). Both biases are generally worse for samples with a higher luminos-
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ity threshold given the curvature in the underlying distribution function12, thus higher-z samples
with higher intrinsic AGN luminosities will have larger BH mass biases, leading to an appar-
ent evolution. There are several samples that are probing similar luminosities as the local RM
AGN sample (e.g., Woo et al. 2006). Since the SE mass estimators were calibrated on the lo-
cal MBH − σ∗ relation using the RM AGN sample, one argument often made is that both biases
should be calibrated away for the high-z sample with similar AGN luminosities. This argument
is flawed, however, because the local RM AGN sample is heterogeneous and is not sampling uni-
formly from the underlying BH/galaxy distribution functions, while the high-z sample usually is
sampling uniformly from the underlying distributions – this is exactly why both biases will arise
for the high-z samples. The only exception that might work is to compare two quasar samples at
two different redshifts with the same luminosity threshold, where the predicted BH mass biases
should be of the same amount, and see if there is evolution in the average host properties. But
even in this case it requires that the underlying distributions (slope and scatter) and measurement
systematics are the same for both the low-z and high-z samples. Proper simulations that take
into account the measurement systematics (in both BH mass and host properties) and underlying
distributions should be performed to verify the interpretations upon the observations.

To summarize, there might be true evolutions in the BH-host scaling relations13, but the
current observations are inconclusive, due to the unknown systematics in the BH mass and host
galaxy measurements. Better understandings of these systematics, the selection effects, as well as
theoretical priors are all needed to probe the evolution of these scaling relations, and such efforts
have been underway (e.g., Croton 2006; Robertson et al. 2006; Lauer et al. 2007; Hopkins et al.
2007; Di Matteo et al. 2008; Booth & Schaye 2009; Shankar et al. 2009; Shen & Kelly 2010;
Hirschmann et al. 2010; Schulze & Wisotzki 2011; Jahnke & Macció 2011; Portinari et al. 2012;
Salviander & Shields 2012; Zhang et al. 2012).

5. Summary and future perspectives

To conclude, there have been considerable progress over the past several decades on the de-
velopment of BH weighing methods for quasars. We now have a working technique based on
reverberation mapping of broad line AGNs that can measure active virial BH masses with an
accuracy of a factor of a few (∼ 0.5 dex). Rooted in the RM technique, efficient SE virial mass
estimators have been developed to measure BH mass for large statistical samples of broad line
quasars based on single-epoch spectroscopy. These methods greatly facilitate quasar studies in
the era of modern, large-scale spectroscopic surveys.

However, there are outstanding issues regarding the reliability of these virial (RM or SE)

12This is not always the case. If the scatter (σµ, σ′l ) increases at the low-mass end, then both biases could be worse at
the low-mass/luminosity end.

13If the mass and velocity dispersion of galaxies bear any resemblance to the virial mass (Mh,vir) and virial velocity
(Vh,vir) of their host dark matter halos, then one of the two relations, MBH − σ∗ and MBH − Mbulge, must evolve since the
Mh,vir − Vh,vir relation is redshift-dependent.
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mass estimators, and consequences of their significant uncertainties, which is the focus of this
review. Specifically I have the following highlighting remarks.

• There are genuine concerns that the current RM sample does not represent the whole
quasar/AGN population, and the limited sample size and luminosity/redshift ranges of the
RM sample, as well as the poorly understood BLR structure and dynamics, may impact
the applicability of these locally-calibrated SE relations to high-z and/or high-luminosity
quasars (§3.1). Due to limitations of the current RM sample and the uncertainty in the
average virial coefficient 〈 f 〉, systematic biases on the order of a factor of a few are likely
present due to these physical caveats.

• Even when the extrapolation of these SE estimators to high-z quasars is justified, rigorous
statistical biases will arise from the uncertainties (scatter) in these SE masses (§3.3). In
particular I demonstrated the conceptual difference between errors in SE masses and the
distribution of SE masses within restricted luminosity ranges. Since luminosity is used
in the estimation of SE masses, the variance in SE mass is reduced when luminosity is
constrained. I also derived the luminosity-dependent bias (e.g., Shen et al. 2008a; Shen
& Kelly 2010, 2012) that at fixed true mass, the SE masses are over(under)-estimated in
the mean when luminosity is higher (lower) than the mean luminosity at this fixed true
mass, due to the stochastic variations between luminosity and line width that contribute to
the uncertainty of SE masses. Simple simulations were performed to demonstrate these
effects, and suggest that sample biases on the order of a factor of a few are present in
flux-limited bright quasar sample. Thus these error-induced biases are as significant as the
unknown systematic biases in SE masses, and cannot be ignored. More importantly, even
when we eliminate all systematic biases (zero-point uncertainty) of these SE estimators
in the future, these error-induced statistical biases will largely remain given the imperfect
nature of these estimators. The formalism in §3.3.2 provides guidance on how to quantify
these error-induced sample biases with simulations.

• Properly accounting for the selection effect due to the sample flux limit, and statistical bi-
ases arising from errors in SE masses, are crucial to interpreting the observed distributions
of quasars in statistical samples (§4). I discussed how the “observed” distributions of BH
mass and Eddington ratio for threshold data and with SE masses differ from the “true”
distributions (§4.2), and cautioned on some recent claims based directly on the observed
distributions. I further commented on the impact of the error-induced biases in SE masses
on studies of the evolution of the BH-host scaling relations (§4.3), and concluded that the
current observations are inconclusive for the claimed evolution.

Looking forward, there is an urgent need to expand the current RM sample with lag mea-
surements, and, to acquire exquisite (velocity-resolved) RM data to utilize the full power of this
technique. Only with a substantially larger RM sample that properly probes the AGN parameter
space, and with a much better understanding of the BLR geometry and dynamics (for different
lines) based on these RM data and ancillary data, can we improve these virial BH mass estimators
further. Since resource-wise, RM is a consuming exercise, it would be interesting to explore the
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possibilities of more efficient RM with wide-field multi-object imaging and spectroscopy, as well
as dedicated facilities for single-object-mode monitoring.

There are a few recent innovative proposals regarding RM that are worth mentioning. Zu
et al. (2011) proposed an alternative method to measure RM lags, by fitting the observed contin-
uum and emission line light curves with recently-developed statistical models to describe quasar
variability (e.g., the “damped random walk” model developed by Kelly et al. 2009b; Kozlowski
et al. 2010). Compared with the traditional cross-correlation method in measuring RM lags (e.g.,
Gaskell & Peterson 1987), this new method can improve lag measurements by simultaneously fit-
ting multiple lines and quantifying error correlations. In addition, there have been efforts to build
dynamical BLR models to directly model the RM light curves in the time domain (e.g., Brewer
et al. 2011; Pancoast et al. 2012); such forward modeling (as discussed in, e.g., Netzer & Peterson
1997) can in principle provide direct constraints on the geometry of the BLR and the mass of the
BH, and so it is worthwhile to explore its potential further. Finally, alternative strategies in RM
experiments with no or few spectroscopic data (e.g., Haas et al. 2011; Chelouche & Daniel 2012;
Fine et al. 2012), while not as good and reliable as traditional spectroscopic RM, may speed up
the process of probing the diversity of AGN parameters in the context of RM.
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