Bull. Astr. Soc. India (2011) 39, 259-275

A study of the near-infrared modulation at spin and orbital periods in the intermediate polar WX Pyx

V. H. Joshi^{*}, N. M. Ashok and D. P. K. Banerjee *Physical Research Laboratory, Ahmedabad 380 009, India*

Received 2011 May 02; accepted 2011 May 16

Abstract. We present near-infrared *J*-band photometric observations of the intermediate polar WX Pyx. The frequency analysis indicates the presence of a period at 1559.2±0.2 sec which is attributed to the spin period of the white dwarf. The spin period inferred from the infrared data closely matches that determined from X-ray and optical observations. WX Pyx is a system whose orbital period has not been measured directly and which is not too well constrained. From the IR observations, a likely peak at 5.30±0.02 hr is seen in the power spectrum of the object. It is suggested that this corresponds to the orbital period of the system. In case this is indeed the true orbital period, some of the system physical parameters may be estimated. Our analysis indicates that the secondary star is of M2 spectral type and the distance to the object is 1.53 kpc. An upper limit of 30° for the angle of inclination of the system is suggested. The mass transfer rate and the magnetic moment of the white dwarf are estimated to be $(0.95-1.6) \times 10^{-9} M_{\odot} \text{ yr}^{-1}$ and $(1.9-2.4) \times 10^{33} \text{ G cm}^3$ respectively.

Keywords : stars: individual: WX Pyx - novae, cataclysmic variables

1. Introduction

Intermediate polars (IPs) are a sub-class of magnetic cataclysmic variable stars (mCVs). An IP comprises of a semi-detached binary system consisting of a white dwarf primary star and a late-type Roche-lobe filled secondary star; the white dwarf is believed to have a moderate magnetic field strength of $B\sim1-10$ MG (Patterson 1994). The rotation period of the white dwarf is not synchronized with the binary orbital period. The mass transferred from the secondary to the primary, by the process of Roche lobe overflow, eventually accretes onto or near the magnetic poles of the white dwarf through the magnetic field lines. The shock heated plasma produces

^{*}email: vjoshi@prl.res.in

X-rays by the cooling of electrons near the white dwarf's surface through free-free interactions (Evans & Hellier 2007). Recently, Bednarek & Pabich (2010) have proposed that γ rays could also be produced when the accelerated hadrons are convected to the white dwarf surface and interact with the dense matter. A comprehensive review of IPs may be found in Warner (1995).

WX Pyx was identified as 1E 0830.9-2238 in the Galactic plane survey of Einstein X-ray observatory by Hertz & Grindlay (1984). The blue excess seen in the object and also the nature of the optical spectra, which displayed emission lines including Hydrogen Balmer lines, Her and HeII - lines which are typically seen in the spectra of CVs - suggested the object as a CV candidate (Hertz et al. 1990). The strong presence of the high-excitation HeII 4686 Å line in the optical spectrum also suggested the possibility of a magnetic nature for the system (Hertz et al. 1990). From an analysis of the optical light curve O'Donoghue (1996) found a stable period of ~ 26 min which was attributed to the spin period of the white dwarf and confirmed the IP nature of the WX Pyx system. They suggested a value of of ~ 6 to 9 hr for the orbital period, based on spectroscopic and photometric data, but stressed that this result was not robust and should be viewed with caution. Though there are no direct X-ray observations of WX Pyx available till date, the object was accidentally detected 10.5 arcmin off-axis during a pointed observation of NGC 2613 by XMM-Newton. Schlegel (2005) analyzed data related to this serendipitous X-ray detection and found a spin period of 1557.3 s which matched well with the optical spin-period estimate of O'Donoghue (1996). An orbital period of ~5.54 hr was inferred indirectly from the separation of spin-orbital side band frequencies in the power spectrum.

The present study is partially motivated by the fact that there are no infrared studies of WX Pyx. More importantly, we had hoped to determine more robustly the orbital period of the system for which no direct observational evidence is available. Such a determination would allow many of the system parameters and mode of accretion of WX Pyx to be better estimated. In this study we present photometric observations at near-IR J band and undertake a time series analysis to estimate the orbital and spin period of the object.

2. Observations and data analysis

Near infrared J band photometry of WX Pyx was done using the Mt.Abu 1.2-m telescope. The object was observed for a total duration of 22 hr spanning six nights from December 2007 to February 2010. The observations were taken using the Near-Infrared Imager/Spectrometer which uses a 256×256 HgCdTe NICMOS3 array with a FOV of 2×2 arcmin². The telescope was dithered at 5 different positions during observations, as is customary for IR observations (for e.g. Das et al. 2008), to produce median sky-cum-dark frames for individual images. Several selected field stars were always kept in the field of view while dithering to enable differential photometry to be done. Frames of smaller durations were co-added when single frames of larger duration were not available. Flat fielding, using twilight flats, was done to ensure a proper pixel response of the detector. An appropriate median sky-cum-dark image was generated and sub-tracted from the object frames. Instrumental magnitudes, obtained from these sky-subtracted

Date of	Reduced	Filter	Exp.	Time	Spin
observations	JD		time	cover-	cycles
(dd/mm/yyyy)			(sec)	age (hr)	covered
18/12/2007	54452	J	180	4.5	10
19/12/2007	54453	J	180	3.9	9
18/01/2008	54483	J	60	3.3	7.5
18/03/2009	54909	J	60	4.1	9.5
19/03/2009	54910	J	60	4.0	9.5
22/02/2010	55250	J	180	2.2	5

Table 1. Log of the photometric observations.

Note: Reduced JD = JD - 2400000

frames using aperture photometry, were finally flux calibrated by comparing with several field stars whose lightcurves had previously been checked for photometric stability.

The routines used for data reduction are based on the Interactive Data Language (IDL) package. Specifically, APER procedure from GSFC IDL astronomy user's library was used for synthetic aperture photometry. The log of the observations is given in Table 1, which gives the date of observations, filter information, exposure time, total observation coverage and the number of spin cycles covered. The *J*-band photometric data are listed in the Appendix.

3. Results and discussion

3.1 Light curves and frequency analysis

The light curves of individual nights are shown in Fig. 1 along with their corresponding periodograms. A clear modulation at a period close to 26 min can be visually seen in all the light curves. Equivalently, analysis yields the presence of strong peak near 0.64 mHz in all the periodograms. The mean J magnitude of the program star, peak frequency and semi-amplitude of the light curve on individual nights are presented in Table 2. The peak frequency varies between 0.6367 mHz to 0.6439 mHz in periodograms of individual runs. This variation of 0.007 mHz, however, is much below the error level estimated from half width at half maximum of the peak which is 0.02 mHz.

Rapid but weak oscillations at frequencies other than that of the principal component at 0.64 mHz were also observed in certain light curves. Notable among these is the one near 1.2 mHz which is the first harmonic of the spin period. In order to check the coherence of these weak oscillations we plotted the periodograms up to the Nyquist frequency for all the light curves of individual nights. We do not find any coherent frequency above 0.64 mHz. We thus conclude that these weak oscillations may be due to flickering in the light curve, a feature which is a common characteristic of CVs.

V. H. Joshi et al.

Reduced JD of	Mean J	Peak	Semi-
observation	magnitude	frequency	amplitude
		(mHz)	(mag)
54452	15.54	0.6367	0.14
54453	15.51	0.6372	0.16
54483	15.53	0.6413	0.11
54909	15.57	0.6439	0.12
54910	15.51	0.6418	0.12
55250	15.56	0.6421	0.11

 Table 2. Frequency analysis of daily lightcurves.

Figure 1. Light curves of all the nights listed in Table 1 are shown in the panels on the left. The abscissa is HJD - HJD0 where HJD0 is arbitrary and given in the lower left for each day. Solid line shows the best fit sinusoid plus a polynomial fit representing the long term variation. The Lomb-Scargle periodograms of individual runs are shown in the right hand panels. It may be noted that the periodograms extend up to the Nyquist frequency.

Figure 2. The Lomb-Scargle periodogram of all the data is shown. The dotted lines indicate orbital and spin frequencies. The dashed lines show the first harmonic of the orbital and spin periods whereas the dot-dashed lines represents the spin-orbital sidebands. The window function is plotted as an inset in the top of the figure.

The periodogram of the combined data plotted till the Nyquist frequency is shown in Fig. 2. A strong peak can be seen near 0.64 mHz. Another noteworthy peak is at the low frequency end of the periodogram near 50 μ Hz which is discussed subsequently. One can also see minor peaks corresponding to 0.74 mHz and 1.28 mHz. But we consider these latter peaks to be statistically insignificant because the associated power is at a level of only 2 sigma above the background. Temporal gaps of various lengths in the observed data set cause the various aliasing peaks to be present in the periodogram of Fig. 2. One day aliases are dominant in particular. This can be clearly seen in a plot of the window function which is presented as an inset in Fig. 2. The periodogram between frequencies 0.4 and 0.9 mHz is shown in Fig. 3 which is magnified part of the region containing peak near 0.64 mHz frequency. The highest power is at a frequency of 0.64134±0.00008 mHz which corresponds to a period of 1559.2±0.2 sec. It may be noted that the formal error of the frequency (or period) is estimated by half-width at half-maximum of the highest peak in the periodogram which is the conventional way to determine the error.

It is possible to generate the pulse profile of the spin modulation from the entire data set. As a first step, a best fit polynomial of either degree one or two was subtracted from data of individual nights to remove the long-term variation from the light curve. The data were then folded at a period 1559.2 sec. The phase was divided into 25 bins to produce the spin pulse profile which is presented in Fig. 4. The error in each bin is inferred from the standard deviation of the data

V. H. Joshi et al.

Figure 3. The LS periodogram of all the data near the spin frequency, which is marked with a vertical dash at 0.64134 mHz, is shown.

points within the bin. From our analysis we find that the time of maximum of the oscillation is at RJD 54322.03408 ± 0.00005 d.

In Fig. 2, another significant peak is seen at a much lower frequency near 50 μ Hz. A Lomb-Scargle periodogram produced around this frequency, in the range 0.02 μ Hz to 200 μ Hz, is shown in Fig. 5. In this periodogram the maximum power is present at a frequency of 52.43075 μ Hz corresponding to a period of ~5.3 hr. However, various alias peaks are strong in this spectrum and the 1-day alias in particular, at a frequency of 40.45529 μ Hz or alternatively corresponding to a period of ~6.9 hr, is of comparable power to the 5.3 hr peak. It is thus possible that either one of these periods (i.e 5.3 or 6.9 hr) may correspond to the orbital period but it is difficult to discriminate between the two based solely on our data.

Figure 4. The binned pulse profile folded at 1559.2 sec corresponding to the white dwarf spin period. The complete cycle is divided into 25 bins. The ordinate represents the relative magnitude and the abscissa represents the fractional phase. The spin cycle is repeated once for clarity.

However, we propose that the 5.3 h period more likely corresponds to the orbital period of the binary system. First, the period of 5.3 hr is in reasonably good agreement with the orbital period of 5.54 h inferred by Schlegel (2005) from the separation of spin-orbit sideband peaks in the power spectrum of the X-ray data. Moreover a peak-like feature, albeit of weak power, is seen at a frequency 0.74478 mHz in Fig. 2. If the 5.3 h period is correct, then such a feature is expected to arise as a result of the $\omega + 2\Omega$ sideband peak. On the other hand, if the 6.9h period is correct, then based on the same argument advanced above, we should expect a feature at 0.73240 mHz which is however not seen. In summary, there are indications from our data for a 5.3 h orbital period in the WX Pyx system. The evidence for this is not overwhelming, but when results from the X-ray data are also considered collectively, the 5.3 h period appears to be a realistic possibility.

V. H. Joshi et al.

Figure 5. The LS periodogram near the orbital frequency is shown. It may be noted that there is no significant power above the noise level at the first harmonic of the orbital frequency.

We thus assume that 5.30 ± 0.02 hr as the orbital period and adopt it, in following subsections, to determine some of the system parameters of WX Pyx. The orbital phase plot of WX Pyx is given in Fig. 6 using a precise value of 5.297 hr (19072 sec) for the orbital period. The time of the maximum light of the orbital modulation is found to be RJD 54327.1897 ±0.0002 d.

3.2 Spectral type of the secondary

It is well established that the secondary star in cataclysmic variables, with period less than 6 hr, resemble late-type main sequence stars i.e. stars of spectral type K or M. However, the secondary stars of CVs have been shown to be a little cooler than the isolated main sequence star of same

Figure 6. The binned phase plot of 5.30 hr corresponding to the orbital period of WX Pyx is shown. The complete cycle is divided into 15 bins. The ordinate represents relative magnitude and the abscissa represents the fractional phase. The profile is repeated once for clarity.

mass and radius (Knigge 2006, and Fig. 7 therein; hereafter K2006). An empirical relationship between orbital period and spectral type has been obtained (Beuermann 1998; K2006). Using the empirical relation discussed in K2006, and assuming an orbital period of 5.3 hr, we estimate the spectral type of the secondary to be constrained in the range M2 \pm 2.

V. H. Joshi et al.

3.3 Distance to the source

Since the spectral type of the system is known, one can estimate the distance to it using the method first suggested by Bailey (1981). This inter-relates the surface brightness F_{λ} at wavelength λ , radius of the star *R*, distance *d* and observed flux f_{λ} , by the following relation

$$F_{\lambda} = f_{\lambda} \left(\frac{d}{R}\right)^2 \tag{1}$$

Assuming that the late type secondary star is the dominating contributor to the K band flux and expressing flux in magnitudes we can write,

$$S_k = m_K + 5 - 5logd + 5log\left(\frac{R}{R_{\odot}}\right)$$
⁽²⁾

where m_K is the apparent magnitude and S_k is the surface brightness in the K band. The radius R of the star can be calculated from the Roche-lobe geometry. However, the above approach gives only a lower limit of the distance instead of distance itself because of our assumption that the secondary star is the sole contributor to the K band flux. K2006 discussed the relations between mass-radius and spectral type-orbital period and used these in the above equation to derive the simpler form given below viz.

$$5log(d_{lim}) = m_K - M_K(P_{orb}) + 5$$
(3)

where d_{lim} is the lower limit to the distance, m_K is observed K band magnitude and M_K is the absolute magnitude as a function of orbital period.

From K2006 we obtain an absolute K band magnitude $M_K = 5.15$ for a 5.3 hr orbital period. The K_s band magnitude of WX Pyx from 2MASS data (K_s mag. = 14.817) was converted to the CIT system using the transformation given by Carpenter (2001) resulting in a transformed CIT K magnitude of 14.857. The use of this value in the last equation gives a lower limit to the distance as 874 pc. However, as pointed out by K2006, the assumption that the secondary contributes predominantly to the K band flux is not necessarily true in a general sense. K2006 studied the objects with well-determined distances based on the parallax method and gave an offset value in magnitudes which is to be applied to estimate better the distance to the object. Applying this offset of 1.22 magnitude for the K band we infer the distance to the source to be ~1.53 kpc.

3.4 Mode of accretion onto the white dwarf

In their first optical follow-up observations, Hertz et al. (1990) analyzed the optical spectrum of WX Pyx and calculated the equivalent width of the H β emission line. From this, they estimated the *V* band absolute magnitude of the disc M_v using the relation given by Patterson (1984) which correlates these two parameters . They compared M_v with the observed *V* band magnitude to infer that the distance to WX Pyx is ~1.6 kpc. We keep in mind that the relation given by Patterson (1984) holds for IPs with well-developed discs around the white dwarf. Interestingly the distance estimate in this work of ~1.53 kpc, calculated using a different approach, closely matches that of Hertz et al. (1990). The agreement/consistency of two independent methods yielding similar distance estimates to WX Pyx suggests that the inherent assumption in the Hertz estimate (i.e. the system has a disc) is valid. Thus it would appear that WX Pyx contains a partial disc around the white dwarf and it is mildly suggested that the mode of accretion is disc-fed. Further supporting evidence for the presence of the disc comes from the modulation at orbital period. The existence of such a modulation can be explained only by varying aspect of the bright spot formed at the location of stream-disc interaction which, again, requires the presence of the disc.

3.5 Constraints on the angle of inclination of the system

It is expected that CVs show an ellipsoidal variation in their near-IR light curves at the first harmonic of the orbital period. Such a variation would arise due to the aspect variation of the Roche-lobe filled distorted secondary star. Fixing the other known parameters of the system one can infer the angle of inclination *i* from the the shape of the phase curve. As seen in Fig. 1, the periodogram does not show significant power at the first harmonic of the orbital period shown as dashed line at the low frequency end of the spectrum. This suggests that the inclination angle of the binary system is low.

To estimate the upper limit of the inclination angle *i* we produced a binned phase curve at the first harmonic of the orbital period. This phase curve shows a maximum scatter of ± 0.03 magnitudes. In order to estimate the upper limit of *i* we produced the synthetic phase curve using Wilson-Devinney light curve code (Wilson & Devinney 1971). Limb darkening values were obtained from interpolation of data in the table provided by Van Hamme (1993). The mass ratio *q* was varied between 0.2 and 0.6 and the appropriate inclination angle was obtained for each value of *q* such that the synthetic light curve shows a similar scatter as that observed in the data. We find that for any value of *q* in the chosen range, the inclination angle *i* is less then 30°. This is suggestive that the inclination angle of the system is small.

3.6 Mass transfer rate

The mass transfer rate \dot{M} of the system can be estimated by comparing the accretion luminosity L_{acc} and the released gravitational potential energy. When the mass is transferred from the inner

V. H. Joshi et al.

Lagrangian point to the white dwarf surface, the gravitational potential energy is released and radiates away, largely at X-ray wavelengths in the case of magnetic CVs.

To estimate the X-ray luminosity of WX Pyx we used the flux values given by Evans & Hellier (2007). These authors modeled the X-ray spectrum of WX Pyx using a combination of a non-thermal hard component and a thermal soft component. The unabsorbed bolometric X-ray flux corresponding to the soft and hard components are estimated to be 6.0×10^{-13} ergs s⁻¹ cm⁻² and 7.51×10^{-12} ergs s⁻¹ cm⁻² respectively giving a total X-ray flux of 8.11×10^{-12} ergs s⁻¹ cm⁻². This flux is converted into the X-ray luminosity by the relation $L_x = 2\pi d^2 F_x$ where L_x is the Xray luminosity in ergs s⁻¹, F_x is the X-ray bolometric flux in ergs s⁻¹ cm⁻² and d is the distance. Here, the factor 2π is used instead of 4π to take into account that the X-ray emitting shock region is close to the white dwarf surface and half of the total emission is blocked by the stellar surface. Using a value of d = 1.530 kpc gives the X-ray luminosity $L_x = 1.1 \times 10^{33}$ ergs s⁻¹. Estimation of L_{acc} is a complex process requiring information about various aspects including the IR to UV emission from the accreting material, absorption effect at UV and soft X-ray wavelengths and the contribution from X-rays above 10 keV (Warner 1995). However Warner (1995) indicates that L_{acc} may be estimated, within an uncertainty of a factor of 2, by multiplying L_x by 50. Therefore, L_x was multiplied by this factor to estimate L_{acc} which in turn is converted into the mass transfer rate \dot{M} using $L_{acc} = GM_{WD}\dot{M}/R_{WD}$ where L_{acc} is the total accretion luminosity and M_{WD} and R_{WD} are the mass and radius of the white dwarf respectively. M_{WD} was chosen to lie in the range 1.31 to 1.4 M_{\odot} as inferred by Evans & Hellier (2007) from modeling of the hard component of the X-ray data. R_{WD} was calculated from the empirical mass radius relationship for white dwarfs given by Pringle & Webbink (1975). We obtain the mass transfer rate to lie in the range 0.6 to 1.0×10^{17} g s⁻¹ or 0.95 to $1.6 \times 10^{-9} M_{\odot}$ yr⁻¹. This value of \dot{M} is found to be fairly typical for IPs as has been compiled for several other such objects (Warner 1995).

3.7 Magnetic moment of the white dwarf

Assuming a magnetic white dwarf with spherically symmetric accretion, the magnetospheric radius r_{mag} is defined to be the radius at which the magnetic pressure balances the ram pressure of the infalling material. Following the calculation given in Frank, King & Raine (2002) the magnetospheric radius is given by

$$r_{mag} = \left(\frac{2\pi^2 \mu^4}{\mu_0^2 G M_{WD} \dot{M}^2}\right)^{1/7} \tag{4}$$

where μ and μ_0 are magnetic moment of white dwarf and permeability of free space respectively. However, if the white dwarf is accreting via a disc, the true magnetospheric radius R_{mag} can be estimated from $R_{mag} = 0.5 r_{mag}$.

If the white dwarf of the IP is in spin equilibrium it is assumed that the magnetospheric radius

 R_{mag} is very close to the co-rotation radius R_{co} (e.g. Norton, Wynn & Somerscales 2004). Here R_{co} is the radius at which the accreting material in local Keplerian motion co-rotates with the magnetic field of the white dwarf. Therefore,

$$R_{mag} \sim R_{co} = \left(\frac{GM_{WD}P_{spin}^2}{4\pi^2}\right)^{1/3}$$
(5)

Comparing equations (4) and (5), we get

$$\mu = 0.06 \left(G^{5/6} M_{WD}^{5/6} P_{spin}^{7/6} \dot{M}^{1/2} \right) \tag{6}$$

For WX Pyx, μ is thus estimated in the range 1.9 to 2.4×10^{33} G cm³ for a M_{WD} value ranging between 1.31 and $1.4M_{\odot}$. This result is consistent with the magnetic moments of several other IPs estimated by Warner (1995).

Norton et al. (2008) have simulated the accretion flow of magnetic CVs in a detailed study. They have shown that for a fixed orbital period and mass ratio, different regions in a diagnostic plot of the spin period versus magnetic moment, correspond to different geometries for the accretion viz. disc, stream, ring and propeller (Figs. 1 and 2 in Norton et al. 2008). For the orbital period and mass ratio specific for WX Pyx, we find that the estimated value of magnetic moment along with the spin period falls well inside the region corresponding to a disc type accretion. This also supports disc-fed accretion as the favored mode of accretion in WX Pyx.

4. Summary

We have presented near infrared 1.25 μ m J band photometry of WX Pyx covering a total duration of 22 hr spanning six nights from December, 2007 to February, 2010. Our motivation was to determine the spin period of the object from IR observations, an exercise which has not been done earlier, and if possible to also determine the orbital period. The frequency analysis of the light curve clearly indicates the presence of a spin period of 1559.2±0.2 sec for the white dwarf. However, the orbital period is less robustly determined. From the IR observations, a likely peak at 5.30±0.02 hr is seen in the power spectrum of the object which is argued to be the orbital period of the system. Subsequently, estimates are made of some of the physical properties and parameters of the system viz. the spectral type of the secondary star, the distance to the object, the mode of accretion, the angle of inclination of the system, the mass transfer rate and the magnetic moment of the white dwarf.

5. Acknowledgments

The research work at Physical Research Laboratory is funded by the Department of Space, Government of India.

V. H. Joshi et al.

References

Bailey J., 1981, MNRAS, 197, 31

Bednarek W., Pabich J., 2011, MNRAS, 411, 1701

Beuermann K., Baraffe I., Kolb U., Weichhold M., 1998, A&A, 339, 518

Carpenter J.M., 2001, AJ, 121, 2851

Das R.K., Banerjee D.P.K., Ashok N.M., Chesneau O., 2008, MNRAS, 391, 1874

Evans P.A., Hellier C., 2007, ApJ, 663, 1277

Frank J., King A., Raine D.J., 2002, Accretion Power in Astrophysics Third ed., Cambridge University Press, Cambridge, p. 158

Hertz P., Grindlay J.E., 1984, ApJ, 278, 137

Hertz P., Bailyn C.D., Grindlay J.E., Garcia M.R., Cohn H., Lugger P.M., 1990, ApJ, 364, 251

Knigge C., 2006, MNRAS, 373, 484 (K2006)

Norton A.J., Wynn G.A., Somerscales R.V., 2004, ApJ, 672, 524

Norton A.J., Butters O.W., Parker T.L., Wynn G.A., 2008, ApJ, 672, 524

O'Donoghue D., 1996, MNRAS, 278, 1075

Patterson J., 1984, ApJS, 54, 443

Patterson J., 1994, PASP, 106, 209

Pringle J.E., Webbink R.F., 1975, MNRAS, 172, 493

Schlegel E.M., 2005, MNRAS, 433, 635

Van Hamme W., 1993, AJ, 106, 2096

Warner B., 1995, Cataclysmic Variable Stars, Cambridge Astrophys. Ser., Cambridge University Press, Cambridge, p. 397

Wilson R.E., Devinney E.J., 1971, ApJ, 166, 605

Appendix

The appendix lists the *J* band photometric data of WX Pyx.

Table 3: *J* band photometric data of WX Pyx.

Heliocentric JD	J	ΔJ	Heliocentric JD	J	ΔJ	Heliocentric JD	J	ΔJ
2454452.3567	15.58	0.05	2454452.3821	15.47	0.06	2454452.4126	15.76	0.06
2454452.3592	15.56	0.05	2454452.3846	15.55	0.05	2454452.4151	15.62	0.05
2454452.3618	15.37	0.04	2454452.3897	15.59	0.05	2454452.4177	15.54	0.05
2454452.3643	15.39	0.05	2454452.3923	15.62	0.05	2454452.4202	15.43	0.05
2454452.3669	15.35	0.05	2454452.3948	15.75	0.05	2454452.4227	15.46	0.05
2454452.3694	15.37	0.05	2454452.3973	15.59	0.05	2454452.4253	15.56	0.05
2454452.3719	15.47	0.06	2454452.4024	15.48	0.05	2454452.4278	15.73	0.05
2454452.3745	15.53	0.05	2454452.4050	15.45	0.05	2454452.4303	15.86	0.05
2454452.3770	15.54	0.05	2454452.4075	15.48	0.05	2454452.4329	15.70	0.05
2454452.3796	15.53	0.05	2454452.4100	15.65	0.05	2454452.4380	15.62	0.05

Infrared studies of the intermediate polar WX Pyx

Heliocentric JD	J	ΔJ	Heliocentric JD	J	ΔJ	Heliocentric JD	J	ΔJ
2454452.4405	15.58	0.05	2454453.3119	15.64	0.04	2454453.4028	15.66	0.04
2454452.4430	15.61	0.05	2454453.3140	15.75	0.04	2454453.4049	15.68	0.05
2454452.4456	15.75	0.06	2454453.3161	15.61	0.05	2454453.4070	15.64	0.04
2454452.4481	15.80	0.06	2454453.3183	15.42	0.04	2454453.4091	15.54	0.04
2454452.4507	15.57	0.05	2454453.3204	15.31	0.05	2454453.4112	15.45	0.04
2454452.4532	15.43	0.05	2454453.3225	15.42	0.04	2454453.4133	15.36	0.05
2454452.4557	15.51	0.06	2454453.3246	15.41	0.05	2454453.4154	15.45	0.04
2454452.4583	15.42	0.05	2454453.3267	15.41	0.04	2454453.4175	15.47	0.04
2454452.4608	15.38	0.05	2454453.3288	15.70	0.05	2454453.4196	15.62	0.04
2454452.4659	15.81	0.05	2454453.3309	15.74	0.04	2454453.4217	15.64	0.04
2454452.4684	15.54	0.05	2454453.3330	15.84	0.05	2454453.4238	15.65	0.04
2454452.4710	15.48	0.06	2454453.3351	15.68	0.04	2454453.4259	15.50	0.05
2454452.4735	15.52	0.05	2454453.3372	15.51	0.04	2454453.4302	15.42	0.05
2454452.4761	15.34	0.05	2454453.3393	15.40	0.04	2454453.4323	15.29	0.04
2454452.4786	15.37	0.06	2454453.3414	15.42	0.04	2454453.4344	15.31	0.04
2454452.4811	15.52	0.05	2454453.3435	15.45	0.04	2454453.4365	15.40	0.04
2454452.4837	15.73	0.05	2454453.3456	15.48	0.05	2454453.4386	15.55	0.05
2454452.4862	15.58	0.05	2454453.3477	15.64	0.04	2454453.4407	15.62	0.04
2454452.4888	15.45	0.05	2454453.3499	15.73	0.05	2454453.4428	15.59	0.04
2454452.4913	15.47	0.05	2454453.3543	15.61	0.04	2454453.4449	15.48	0.05
2454452.4938	15.38	0.05	2454453.3564	15.41	0.05	2454453.4470	15.42	0.04
2454452.4964	15.43	0.05	2454453.3585	15.36	0.04	2454453.4491	15.30	0.05
2454452.4989	15.62	0.05	2454453.3606	15.46	0.04	2454453.4512	15.29	0.04
2454452.5015	15.66	0.05	2454453.3627	15.50	0.05	2454453.4533	15.31	0.04
2454452.5040	15.72	0.05	2454453.3649	15.60	0.04	2454453.4554	15.41	0.04
2454452.5065	15.53	0.06	2454453.3670	15.69	0.04	2454453.4575	15.51	0.05
2454452.5091	15.49	0.05	2454453.3691	15.77	0.04	2454453.4597	15.49	0.04
2454452.5116	15.48	0.05	2454453.3712	15.63	0.05	2454453.4618	15.38	0.05
2454452.5141	15.44	0.05	2454453.3733	15.61	0.04	2454453.4639	15.34	0.05
2454452.5167	15.58	0.05	2454453.3754	15.38	0.04	2454453.4660	15.36	0.05
2454452.5192	15.65	0.05	2454453.3775	15.39	0.05	2454483.2813	15.45	0.06
2454452.5218	15.80	0.05	2454453.3796	15.37	0.05	2454483.2835	15.42	0.06
2454452.5243	15.44	0.05	2454453.3817	15.48	0.04	2454483.2858	15.58	0.06
2454452.5268	15.44	0.05	2454453.3838	15.68	0.05	2454483.2880	15.56	0.06
2454452.5294	15.30	0.06	2454453.3859	15.71	0.05	2454483.2925	15.49	0.06
2454452.5319	15.25	0.05	2454453.3880	15.59	0.05	2454483.2948	15.54	0.06
2454452.5345	15.45	0.05	2454453.3901	15.58	0.04	2454483.2970	15.40	0.06
2454452.5370	15.70	0.05	2454453.3943	15.40	0.04	2454483.2993	15.42	0.06
2454452.5395	15.67	0.06	2454453.3965	15.33	0.04	2454483.3015	15.50	0.06
2454453.3077	15.31	0.04	2454453.3986	15.29	0.05	2454483.3038	15.45	0.06
2454453.3098	15.52	0.04	2454453.4007	15.48	0.05	2454483.3060	15.65	0.05

V. H. Joshi et al.

II I' I ID	.	4.7						
Heliocentric JD	<u>J</u>	ΔJ	Heliocentric JD	J	ΔJ	Heliocentric JD	J	ΔJ
2454483.3083	15.67	0.06	2454483.4028	15.58	0.06	2454909.2036	15.61	0.06
2454483.3105	15.48	0.06	2454483.4051	15.53	0.06	2454909.2058	15.70	0.05
2454483.3128	15.42	0.06	2454483.4073	15.33	0.07	2454909.2081	15.63	0.06
2454483.3150	15.42	0.06	2454483.4096	15.47	0.06	2454909.2103	15.72	0.06
2454483.3173	15.41	0.06	2454483.4118	15.55	0.06	2454909.2126	15.48	0.05
2454483.3195	15.51	0.06	2454909.1134	15.48	0.06	2454909.2171	15.36	0.05
2454483.3218	15.59	0.06	2454909.1156	15.59	0.06	2454909.2193	15.46	0.06
2454483.3240	15.64	0.06	2454909.1179	15.59	0.06	2454909.2238	15.63	0.06
2454483.3263	15.78	0.06	2454909.1201	15.62	0.06	2454909.2261	15.81	0.05
2454483.3285	15.67	0.06	2454909.1224	15.60	0.06	2454909.2283	15.74	0.06
2454483.3308	15.51	0.06	2454909.1246	15.54	0.06	2454909.2306	15.64	0.06
2454483.3330	15.46	0.06	2454909.1269	15.46	0.06	2454909.2328	15.49	0.05
2454483.3353	15.55	0.05	2454909.1291	15.40	0.06	2454909.2351	15.37	0.06
2454483.3375	15.60	0.06	2454909.1314	15.54	0.06	2454909.2373	15.36	0.06
2454483.3398	15.52	0.06	2454909.1336	15.60	0.06	2454909.2396	15.50	0.06
2454483.3421	15.71	0.07	2454909.1359	15.72	0.05	2454909.2418	15.69	0.06
2454483.3443	15.79	0.06	2454909.1381	15.72	0.06	2454909.2441	15.67	0.05
2454483.3466	15.69	0.07	2454909.1404	15.64	0.06	2454909.2463	15.62	0.06
2454483.3488	15.47	0.06	2454909.1426	15.49	0.06	2454909.2531	15.37	0.06
2454483.3511	15.35	0.06	2454909.1449	15.60	0.06	2454909.2553	15.37	0.06
2454483.3533	15.46	0.06	2454909.1471	15.55	0.06	2454909.2576	15.48	0.06
2454483.3556	15.48	0.07	2454909.1494	15.59	0.06	2454909.2598	15.68	0.05
2454483.3578	15.51	0.06	2454909.1516	15.53	0.06	2454909.2621	15.61	0.06
2454483.3601	15.61	0.06	2454909.1539	15.68	0.06	2454909.2666	15.50	0.06
2454483.3623	15.54	0.06	2454909.1561	15.58	0.06	2454909.2688	15.56	0.06
2454483.3646	15.58	0.05	2454909.1606	15.40	0.06	2454909.2711	15.54	0.06
2454483.3668	15.56	0.06	2454909.1629	15.47	0.07	2454909.2733	15.50	0.07
2454483.3691	15.43	0.06	2454909.1651	15.52	0.06	2454909.2756	15.53	0.05
2454483.3713	15.39	0.06	2454909.1674	15.53	0.06	2454909.2778	15.59	0.05
2454483.3736	15.44	0.07	2454909.1696	15.72	0.06	2454910.0994	15.37	0.06
2454483.3758	15.70	0.06	2454909.1719	15.83	0.06	2454910.1015	15.38	0.05
2454483.3781	15.64	0.06	2454909.1764	15.59	0.06	2454910.1058	15.33	0.05
2454483.3803	15.53	0.06	2454909.1786	15.56	0.06	2454910.1079	15.44	0.05
2454483.3826	15.54	0.06	2454909.1809	15.52	0.05	2454910.1100	15.71	0.06
2454483.3848	15.45	0.07	2454909.1831	15.47	0.06	2454910.1143	15.42	0.05
2454483.3893	15.47	0.06	2454909.1876	15.61	0.06	2454910.1164	15.44	0.05
2454483.3916	15.42	0.07	2454909.1899	15.66	0.06	2454910.1207	15.36	0.06
2454483.3938	15.55	0.06	2454909.1921	15.78	0.05	2454910.1228	15.39	0.05
2454483.3961	15.77	0.06	2454909.1944	15.51	0.06	2454910.1249	15.52	0.05
2454483.3983	15.59	0.06	2454909.1966	15.57	0.05	2454910.1271	15.59	0.05
2454483.4006	15.59	0.06	2454909.2013	15.48	0.06	2454910.1292	15.75	0.06
2454483.4006	15.59	0.06	2454909.2013	15.48	0.06	2454910.1292	15.75	0.06

Infrared	studies of	f the	intermediate	polar	WX Pvx
				P	

Heliocentric JD	J	ΔJ	Heliocentric JD	J	ΔJ	Heliocentric JD	J	ΔJ
2454910.1313	15.47	0.05	2454910.2144	15.38	0.05	2455250.2234	15.62	0.07
2454910.1334	15.52	0.05	2454910.2165	15.43	0.06	2455250.2255	15.48	0.07
2454910.1356	15.46	0.05	2454910.2186	15.67	0.06	2455250.2276	15.57	0.08
2454910.1377	15.44	0.05	2454910.2208	15.59	0.06	2455250.2297	15.54	0.07
2454910.1398	15.41	0.05	2454910.2229	15.64	0.06	2455250.2318	15.47	0.07
2454910.1420	15.40	0.06	2454910.2250	15.51	0.05	2455250.2339	15.69	0.07
2454910.1441	15.72	0.06	2454910.2272	15.49	0.06	2455250.2360	15.66	0.07
2454910.1462	15.64	0.06	2454910.2293	15.41	0.06	2455250.2381	15.80	0.07
2454910.1484	15.58	0.05	2454910.2314	15.45	0.05	2455250.2402	15.68	0.07
2454910.1526	15.52	0.06	2454910.2335	15.62	0.06	2455250.2423	15.58	0.07
2454910.1547	15.39	0.05	2454910.2357	15.58	0.05	2455250.2444	15.36	0.07
2454910.1569	15.42	0.05	2454910.2378	15.67	0.06	2455250.2465	15.38	0.07
2454910.1590	15.43	0.05	2454910.2399	15.69	0.06	2455250.2486	15.53	0.06
2454910.1611	15.58	0.06	2454910.2421	15.46	0.05	2455250.2507	15.52	0.06
2454910.1633	15.59	0.06	2454910.2485	15.41	0.05	2455250.2528	15.68	0.07
2454910.1654	15.63	0.05	2454910.2527	15.71	0.06	2455250.2549	15.66	0.07
2454910.1675	15.53	0.05	2454910.2548	15.78	0.05	2455250.2570	15.60	0.07
2454910.1696	15.49	0.05	2454910.2570	15.61	0.06	2455250.2591	15.63	0.07
2454910.1739	15.34	0.05	2454910.2591	15.49	0.05	2455250.2612	15.35	0.08
2454910.1760	15.36	0.06	2455250.1981	15.73	0.08	2455250.2633	15.43	0.07
2454910.1782	15.34	0.05	2455250.2003	15.63	0.07	2455250.2654	15.58	0.06
2454910.1803	15.51	0.05	2455250.2024	15.68	0.07	2455250.2675	15.63	0.07
2454910.1824	15.58	0.06	2455250.2045	15.50	0.08	2455250.2696	15.48	0.07
2454910.1888	15.44	0.06	2455250.2066	15.43	0.07	2455250.2717	15.58	0.07
2454910.1909	15.35	0.05	2455250.2087	15.32	0.07	2455250.2738	15.74	0.08
2454910.1931	15.37	0.06	2455250.2108	15.60	0.07	2455250.2759	15.52	0.07
2454910.1952	15.45	0.05	2455250.2129	15.46	0.07	2455250.2780	15.60	0.08
2454910.1973	15.56	0.06	2455250.2150	15.44	0.07	2455250.2801	15.41	0.08
2454910.1995	15.51	0.06	2455250.2171	15.70	0.07	2455250.2822	15.42	0.07
2454910.2037	15.57	0.06	2455250.2192	15.66	0.07	2455250.2843	15.59	0.07
2454910.2059	15.46	0.06	2455250.2213	15.55	0.07	2455250.2885	15.68	0.07