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Abstract. In a recent outburst which lasted for 260 days, the black hole
candidate GRO J1655-40 exhibited a behaviour similar to its last outburst
observed almost eight years ago. We analyze a total of 150 observational spells
in 122 days of data spreaded over the entire outburst phase of Feb. 2005 to Oct.
2005. From our study, a comprehensive understanding of the detailed behaviour
of this black hole candidate has emerged. Based on the degree of importance
of the black body and the power-law components we divide the entire episode
in four spectral states, namely, hard, soft, very soft and intermediate. Quasi-
Periodic oscillations (QPOs) were found in two out of these four states, namely,
in the hard and the intermediate states. In the hard state, at the rising phase of
the outburst, QPO frequency ranged from 0.034 - 17.78Hz and the spectra was
fitted by a disk black body, power-law and iron emission line at 6.2 - 6.5 keV.
In the intermediate state, QPOs vary from 13.17Hz to 19.04Hz and the QPO
frequency modulation in this state was not significant. The spectra in this state
are well fitted by the disk black body and the power-law components. In the
hard state of the declining phase of the outburst, we found QPOs of decreasing
frequency from 13.14 Hz to 0.034 Hz. The spectra of this state were fitted by a
disk black body and power-law components, but in the initial few days a cooler
Comptonized component was required for a better fit. In the soft/very soft
states, the spectral states are mostly dominated by the strong disk black body
component.
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1. Introduction

The Galactic black hole candidates are the most fascinating objects to study in X-rays,
as these sources undergo peculiar timing and spectral changes during their transient as
well as the persistent phases. The soft X-ray transient GRO J1655-40 was first observed
by BATSE on board CGRO on 27th July 1994 (Zhang et al. 1994). This source was
extensively observed with RXTE during 1996 and 1997 and it showed a very complex
timing and spectral behaviour and the source was X-ray active at least for 16 months.

GRO J1655-40, an enigmatic Low Mass X-ray Binary (LMXB) system is located at
(1,b) = (344.98°,2.45°) (Bailyn et al. 1995) with R.A.=16"54™00° and Dec.=—39°50™45°.
Its mass (M = 7.024+0.22 Mg; Orosz & Bailyn 1997) distance (D = 3.2+0.2 kpc; Hjellm-
ing & Rupen 1995), and inclination angle (6 = 69.5° + 0.1°; Orosz & Bailyn 1997) are
well determined. The mass of its companion star is = 2.3 Mg (Bailyn et al. 1995).
GRO J1655-40 may also have shown signatures of the ejection of the superluminal radio
jet (Tingay et al. 1995; Hjellming & Rupen 1995). Recent VLT-UVES spectroscopic
observations suggest that the distance to the source is < 1.7 kpc (Foellmi et al., 2006)
with a secondary star of spectral type of F6IV, making it one of the closest known black
hole candidates. The maximum speed of the jet was found to be ~ 0.37c.

The first observed outburst showed a double peaked profile in the ASM light curve
and it is quite different from other black hole candidates. The first peak in May, 1996,
the source showed a strong flaring activity with non-thermal emission, whereas during
the second peak in August, 1997, the source spectrum was softer and thermal, except
near the end of the outburst when its spectrum was hard (Sobczak et al. 1999). At
least three distinct spectral states, namely, very high state, high/soft state and low/hard
state (Sobczak et al. 1999) have been reported. The luminosity variation of the outburst
was of fast rise and exponential decay (Chen et al. 1997). Investigation of X-ray timing
properties of GRO J1655-40 during the 1996-97 outburst revealed QPOs varying from
0.1 Hz to 300 Hz (Remillard et al. 1999). Two very important discoveries were found
there: one is the superluminal radio jet (Tingay et al. 1995; Hjellming & Rupen 1995)
and the other is the existence of very high QPO frequencies (300 & 450 Hz) (Remillard
et al. 1999; Strohmayer 2001).

After remaining ‘dormant’ for almost eight years, GRO J1655-40 showed a renewed
X-ray activity in late February 2005 (Markwardt & Swank 2005, Chakrabarti et al. 2005;
Shaposhnikov et al. 2007). The source remained active in X-rays for the next 260
days and during this period, it was extensively observed with the RXTE Satellite. In
the present paper, we analyze the archival data of RXTE instruments (ASM and PCA)
and present the results for both the timing and the spectral properties of GRO J1655-40
during this outburst phase. In the entire outburst phase, we identified four spectral states
characterized by the presence or absence of a soft black body component at low energy and
the power-law component at higher energies above ~ 10 keV. Since there are confusions
in the literature regarding the nomenclature vis-a-vis the properties, we define them here
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at appropriate places. The four identified states are termed as the hard, soft/very-soft
and intermediate states. During the total outburst we observed the transitions in this
sequence: hard — soft/very soft — intermediate — hard. In each of these spectral
states, we carried out the timing analysis and find QPO frequencies. The Power Density
Spectra (PDS) are quite different in different spectral states and sometimes the nature
of the PDS is highly correlated with the spectral features. The justification of these
four classifications will be presented later. In previous communications (Chakrabarti et
al. 2005; Chakrabarti et al. 2008) the evolution of the QPO frequencies with time was
shown in the initial and final outburst stages. The rapid variation in QPO frequencies
was explained by using an oscillating and propagating shock.

Prior to our present analysis, Shaposnikov et al. (2007) carried out a multi-wavelength
study for the early stage (beginning with 21st of February, 2005) of the outburst of GRO
J1655-40 for a total of 25 days of data using instruments like RXTE & INTEGRAL for
X-rays, VLA for radio study and ROSTE & SMARTS for optical region. On the basis of
their multi-wavelength campaign they classified the spectral states of the observed period
in four spectral states, namely, low-hard, hard intermediate, soft intermediate, high-soft.
After correlating X-ray and radio fluxes they concluded that the physical origins of the
radio emission and the X-ray emission are not the same. The evidence of a closer coupling
between the power-law component and QPO as also observed by Vignarca et al. (2003)
is totally consistent with the shock propagation model of Chakrabarti et al. (2005, 2008)
as the shock does not propagate in the disk as they mentioned, but through the sub-
Keplerian flow which surrounds the disk (e.g., Chakrabarti & Titarchuk 1995).

Our study, on the other hand, covers 122 days of the observational data spreading
over the full period of the outburst. On the basis of the results of RXTE data, we
classified the total outburst in a slightly different way with four distinct spectral states.
Furthermore, we thoroughly studied the QPO behaviour. We got QPOs in a total of
67 observations out of a total of 150 observations. We also studied the photon count
variation in different energy bands for different spectral states via hardness and softness
intensity diagrams. We identify the energy band in which QPOs are predominantly seen.
We show spectral components and their flux variations. We claim that two components
of the flow, namely, the Keplerian and the sub-Keplerian (halo) are necessary to explain
the mass accretion dynamics. We theoretically estimate the disk and the halo rates from
spectral fits of several observations.

In passing, we may mention that some other workers reported analysis of the outburst
using Swift (Brocksopp et al. 2006) and XMM-Newton & INTEGRAL (Trigo et al. 2007).
The Suzaku data of the late phase of the outburst has been analyzed by Takahashi et
al. (2008) who showed that two different Comptonizing electron clouds are required to
explain the high energy spectra in the low/hard state. This agrees with our findings also
(Chakrabarti et al. 2008). This will be illustrated in more detail in the present paper as
well.
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Figure 1. (a) 2-12 keV ASM light curve and (b) hardness ratio (5-12 keV vs. 2-5 keV count
ratio) as a function of the MJD of the event. The vertical dashed lines indicate the transition of
states.

The paper is organized in the following way: In the next Section, we analyze the
data and present the results of our analysis. This includes the timing analysis of ASM
and PCA data and spectral analysis of PCA data. In Section 3, we present the brief
interpretation of the overall results. Finally, in Section 4, we make concluding remarks.

2. Observation and data analysis
2.1 Analysis of ASM and Light Curves

We analyze publicly available observational data from the RXTE instruments of the 2005
outburst. Here, we present the results from the All Sky Monitor (ASM) and Proportional
Counter Array (PCA) covering the entire eight months of the outburst of GRO J1655-40.
Our analysis covers from the 25th of February, 2005 (MJD = 53426) to 16th of October,
2005 (MJD = 53659). The ASM data has four energy bands corresponding to 2 — 3 keV,
3—5keV,5—12 keV and 2 — 12 keV. PCA contains five proportional counter units
(PCUs 0-4). We used only PCU 2 data for both the timing and spectral analysis due to
its reliability and it is on for 100% of the goodtime. Data reduction and analysis were
carried out with the FTOOLS version of HEADAS-6.1.1 software and XSPEC version
12.3.0.
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Figure 2. The Hardness Intensity Diagram (HID) observed with RXTE/PCA. Count rates are
in 3-20 keV energy band and hardness ratio is defined as the ratio of count rates in the 6-20 keV
and 3-6 keV bands.

We have extracted and analyzed the ASM (Levine et al. 1998) data of different energy
bands for the entire observation. In Figs 1(a-b), the total 2-12 keV ASM light curve
(counts/sec) and the ASM hardness ratio (ratio of the photon count rates in 5-12 keV
and 2-5 keV bands) are plotted. The origin of the time axis is MJD 53420 (19th February,
2005), which is six days before the initial rise of the X-ray intensity. The hardness ratio
variation distinctly reflects the state transitions. The hard to soft transition takes place
on the 13th of March, 2005 (MJD = 53442), the soft to intermediate transition on the
16th of May, 2005 (MJD = 53506), and the intermediate to hard transition takes place
on the 12th of September, 2005 (MJD = 53625). These are marked on the plot. However,
the local changes in the spectral features of different states are not evident from this plot.
This leads us to conduct a robust spectral analysis using the PCA data and the results
are presented below.

The RXTE archival data from February 25th, 2005 (MJD = 53426) to October 16th,
2005 (MJD = 53659) were extracted and analyzed from the Proportional Counter Ar-
ray (PCA; Jahoda et al., 1996). We extract light curves (LC), PDS (with 0.01s binning
of PCA data from 3 — 25keV) and the energy spectra from the good and the best-
calibrated detector units i.e., PCU2, for the PCA. We use the latest FTOOLS software
package. For the timing analysis (LC & PDS) from February 25th, 2005 (MJD = 53426)
to March, 11th, 2005 (MJD = 53440), we use the Science Data of the Event mode
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(E_125us_64M _0_1s, FS4f*gz) and for the rest of the observed dates we use the Sci-
ence Data of the Binned mode (B_8ms_16A.0_.35_H, FS37*.gz) and of the Event mode
(E_62us_32M _36_1s, FS3b*.gz). To extract the light curves from the Event mode data
files, we use the “sefilter” task and for the Binned mode data files, we use the “saextrct”
task. For the spectral analysis, we use Standard2 Science Data of PCA (FS4a*.gz). The
“pcabackest” task was used for the PCA background estimation purpose. Here we used
bright source epoch 5 background model file for calculating PCA background. We also
incorporated pca_saa_history file for taking care of saa data. To generate the response
files, we use the “pcarsp” task. For the rebinning of the pha files created by the “saextrct”
task, we use the “rbnpha’” task.

In Fig. 2 we plotted the PCA 3-20 keV count rate of the 2005 outburst against X-
ray color (ASM count ratio between 6-20 keV and 3-6 keV energy bands). It is evident
that the pre and post-outburst phases tend to appear and disappear from the low count
region having harder spectrum. In GRO J1655-40 outburst, the transition occurs from
the spectral states hard — soft (very soft) — intermediate — hard. It is observed that the
rapid changes in the hardness ratio occurs only in the hard states, whereas in the soft and
intermediate states the hardness ratio changes very slowly. Both rising and falling arms
of the diagram corresponds to the hard state. In both the cases, we found the presence
of QPOs. The possible physical origin will be discussed in Section 2.

In the first phase of the hard state from the 25th of February, 2005 (MJD = 53426)
to the 12th of March, 2005 (MJD = 53441), we found QPOs from 34 mHz to 17.78 Hz.
The observed QPO frequencies were found to be increased monotonically with time (day)
from 0.082 Hz to 17.78 Hz (on the first day another QPO at 34 mHz was also seen.) The
soft state starts from the 13th of March, 2005 (MJD = 53442) and continued till 15th
of May, 2005 (MJD = 53505). In this region no QPO was observed. The intermediate
state is seen from the 16th of May, 2005 (MJD = 53506) to 11th of September, 2005
(MJD = 53624). Interestingly, we found QPOs only for 8 days, from 16th of May, 2005
(MJD = 53506) to 20th of May, 2005 (MJD = 53510) and from 25th of May, 2005 (MJD
= 53515) to 27th of May, 2005 (MJD = 53517). In between, for four days we observed
no signature of QPOs. The QPO frequencies varied from 13.17 Hz to 19.04 Hz. In the
PDS, we also found one broad QPO bump at frequencies near 7 Hz. The final hard state
observed is from the 12th of September, 2005 (MJD = 53625) to 16th of October, 2005
(MJD = 53659). The QPOs of 0.023 Hz to 20.20 Hz QPOs were observed in this state.
If we follow one of the QPO frequencies, we find it to decrease monotonically from 13.14
Hz to 0.034 Hz within 20 days.

2.2 Timing Analysis

We carried out the detailed timing analysis of the total 122 days data of 150 observational
IDs. We used the PCU2 data from the Event mode (E_125us_64M 0_1s) and Science
Array mode (B-8ms_16A4.0_.35_H) data for the timing analysis. Our timing analysis is
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Figure 3. (a-b) In the lower panel, 2 - 15 keV (0-35 Channels) PCA light curve and in the
upper panel the hardness and softness diagrams are plotted. Both the figures are of hard state
observed on 10th of March and 11th of March, 2005. Drastic changes in timing features are
observed in these two consecutive days, see text for details. In hardness diagrams, the dashed
horizontal (B = A), vertical (C' = A) and the dotted line (B = C) are for reference purpose. In
softness diagram they represent C = A, B = C and A = B respectively. (c) Same as in Figs
3(a-b), except that the observation is of 20th March, 2005 when the source was in a soft state.

mainly to study the light curves with hardness and softness variation and the PDS of each
data. Out of these observations, we find QPOs in a total of 67 observations made in 43
days. A summary of the results are presented in Table 1. Here, we list the observing date
and time and the PCA count rates (photon counts/sec) for PCU2 in 3 different energy



158 D. Debnath et al.

c/a B/C
0 05 1 15 0 5 10 15 20

B/C
0 1 2 3 4

7.5 Frr e e e 10 G 2
Hardness‘ Diagram }} Softness Diagram - T S‘L)ftness Diagram ]
6 | =+ T ! : ]
| | ; T ; -4 1.5
I I 1
45 | kN - T i
N | 1 S < T ! =
X - ; -5 NS oy ____ I DI
B ogE i 4 e m T | s
E Bl f T U
Ll T
15 Lis = ;ﬁ 405
:TW‘ 77777777777 ;v } 4
0 U S S BT ) U PO
B11x10* 91702-01-57-00 f T e
o E E| o L 91702-01-79-00]
E 17/05/2005 $
EET 708/ % as0 [ 17/09/2005 1
5 9000 ¢ E g [ ]
o E 3 =
3 8000 = " ]
& 7000 E K]
5
é 6000 El -
E 2 4
& 5000 El 3
2000 B bbb et b1 S [ ]
0 500 1000 1500 2000 2500 3000 soo e Lo v b b b e 10
Time (Sec) () 0 500 1000 1500 2000 2500 3000

Time (Sec) (e)

Figure 3 (d-e): Same as in Figs. 3(a-b) except for (d) the intermediate state (17th of May,
2005) and (e) the hard state of the decline phase (17th of Sept., 2005).

bands, E1: 2 — 3.5 keV (0 — 7 channels), E2: 3.5 — 10.5 keV (8 — 24 channels) and E3:
10.5 — 60 keV (25 — 138 channels). We also list two hardness ratios (E2/E1 and E2/E3)
and the observed QPO frequencies (in Hz).

2.2.1 Light curves with hardness and softness diagrams

We extracted 2 - 15 keV (0-35 Channels) PCA light curve with a time bin of 1 sec. To
have the qualitative analysis of photon count variations in different energy bands, we
plotted both the hardness and softness ratio variations. To plot the hardness and the
softness ratios, we extracted light curves for three energy bands: A : 0— 8 channels (2—4
keV), B : 9 — 35 channels (4 — 15 keV) and C : 36 — 138 channels (15 — 60 keV). A
hardness diagram is the plot between C/A vs. B/A while the softness diagram is the
plot between B/C vs. A/C. Our motivation of splitting the energies in this way stems
from the fact that the Keplerian disk primarily emits at a low energy ( < 4 kev) for the
mass of the black hole we are interested in. Thus, A will be emitted mostly from the
Keplerian component. The component B would be emitted from the region where the
moderate thermal Comptonization of the Keplerian photons take place. The component
C would be emitted from the region which is definitely depleted or enhanced during state
transitions as it represents the higher energy side of the pivotal energy [~ 15 keV] in
the spectrum. Thus, these diagrams are not directly connected to the spectral states —
rather, they are connected to the geometry, i.e., the number of soft photons produced
by the Keplerian disk (~ A) and the seed photons intercepted by the ‘Compton cloud’
[~ (B + C)] and the number of scatterings they undergo (~ B or ~ C).
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(a) Hard state in the rising phase:

In Figs. 3(a-e), we plot the hardness and softness diagrams along with the light curves
in the days when the source exhibited different spectral states. In Fig. 3a and Fig. 3b,
the light curves belong to the hard state in the rising phase of the outburst and are of
the 10th and the 11th of March, 2005. On the 11th of March, 2005, the photon count is
several times than that of the previous day. Though all the three components increased,
there is a drastic change in the hardness and the softness ratio diagrams because C' was
increasing much slower than A and B. Thus the spectrum become much softer within
one day. Strong QPO features were observed in both the days. The detailed PDS and
spectral features are discussed later below. Interestingly, as will be shown below, on the
11th March of 2005, the source did not exhibit any QPO feature in low energy X-ray
(2-4 keV), but it is present in the observation on the 10th of March. Finally, on the 12th
March of 2005, the source enters into soft state and the QPO is totally absent. On both
the days B > A > C.

(b) Soft state in the rising phase:

In Fig. 3c, we draw a similar figure with the data of the 20th of March, 2005, when
the source was in the soft state. The C' component is further reduced while A and B
continue to go up with A approaching B. No QPO signature is observed in this state. In
this case B > A >> C.

(c) Intermediate state:

In Fig. 3d, we present the light curve and the hardness/softness diagram in the
intermediate state as observed in a typical day (17th May, 2005). The C component is
increased very rapidly while the others increasing very slowly. This state shows some
evidence of QPOs on certain days. Here also B > A > C.

(d) Hard state in the decline phase:

Finally, in Fig. 3e, when the source is in the hard state again, both the slopes of the
hardness and the softness diagrams are more flat as compared to those in the intermediate
state and have a similar characteristics as that of the hard state. A typical case based
on the observation on the 17th of September, 2005 is shown here. In this case, the
components B and C became dominant are more than the photon counts in A. Here,
B > C > A. The tendencies of the ratios C/A and B/A in relation to the count rate
are consistent with that shown in Figs 3(a-b). Again, QPO has started appearing in this
state and the frequency went down as the days progressed.
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2.2.2 Power Density Spectra

Figures 4-8 show results of the PDS for the entire episode. To generate Power Density
Spectrum (PDS), we have used “powspec” task of XRONOS package with a normalization
factor of ‘-2’ to have the ‘white’ noise subtracted rms fractional variability. The power
obtained has the unit of rms?/Hz. The light curve of X-ray variability from which PDS
was obtained were binned at 0.01 sec time resolution so that the Nyquist frequency is 50
Hz. QPOs are generally Lorentzian type (Nowak 2000; van der Klis 2005) and thus each
PDS was fitted with a power-law plus Lorentzian profile to derive the central frequencies
and widths of each observed QPO. One has to be careful in rebinning the frequency scale
(Papadakis & Lawrence 1993) as it may misrepresent the behaviour especially at low
frequencies. In our case, we rebinned the PDS with a geometrical factor of —1.02 to have
a nearly equispaced log(frequency) bin. For this choice, any QPO below 0.0122Hz would
not be detected. For the best fitting of the PDS as well as QPO profiles we used the
least square fit technique. After fitting PDS, we have used “fit err” task to calculate +/-
error for QPO frequencies and widths. This task calculates the 90% confidence range
of any fitted parameter. For the best fit we occasionally use another broad Lorentzian
component at the break frequency position. In Table 2, we present a summary of the
results where we put the centroid frequency (v) of the QPO, its width (Av) (both in Hz),
the coherence parameter @ (= v/Av). The RMS amplitudes R of the fitted QPOs are
also included which were calculated from R = 100(PWn/ < ¢ >)1/2 where, P, W and ¢
are the power, half-width (Av/2) of the Lorentzian fitted QPO and the mean count rate
of the source respectively. If Q > 2, it is considered to be a strong QPO, otherwise it is
not strong and look more like a bump on the PDS. Since we are interested only in the
QPO properties, namely, the frequencies associated with the QPO, bump and the break,
only these are included in the Table and not the power-law features which may been used
for the best fit. Since fitting the total PDS is not our goal, an F-test is not needed to
check whether the extra model components are required or not.

In Fig. 4a, we present the model fitted PDS of the light curve of 10th March, 2005
(ID: 90704-04-01-00). We used the “Constant + Lorentzian + Lorentzian + Lorentzian +
Power-Law” models for the fitting. QPOs are at 2.313Hz & 4.599Hz with a 0.363Hz break
frequency. The higher frequency QPO is clearly the first harmonic frequency. Index of
the Power-Law after the break is —0.383. In Fig. 4b, the PDS of 20th March, 2005 (ID:
91702-01-08-00) is shown. This is fitted with “Power-Law + Power-Law” models. This
is akin to a soft state PDS. Index of the first Power-Law is = —0.6339 and the second
power-Law is —0.5767. In Fig. 4c, we show the model fitted PDS in the intermediate-
state on 17th May, 2005 (ID: 91702-01-57-00G). We used “Power-Law + Lorentzian +
Lorentzian” models for the fitting. Here the QPO frequency of 18.94 Hz with a QPO
bump at frequency 7.65 Hz. Index of the first Power-Law is = —1.299. In Fig. 4d, the
result of 17th September, 2005 (ID: 91702-01-79-00), when the object was in the hard
state of the declining phase is shown. We used “Power-Law + Lorentzian + Lorentzian
+ Lorentzian + Lorentzian 4+ Power-Law” models for the fitting. Here we found QPOs
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Figure 4. (a) The model fitted PDS of 10th March, 2005 (ID: 90704-04-01-00). A QPO is found
at 2.313 Hz, with 0.363 Hz break frequency. (b) The model fitted PDS of 20th March, 2005 (ID:
91702-01-08-00). No QPO is observed in this case. (c¢) The model fitted PDS of 17th May, 2005
(ID: 91702-01-57-00G). The QPO is at 18.94Hz with a bump at 7.65Hz. (d) The model fitted
PDS of 17th September, 2005 (ID: 91702-01-79-00). QPOs are found at 0.203Hz, 8.71 Hz with
a break frequency at 1.77 Hz.

at frequencies of 0.203Hz, 8.71Hz & 17.39Hz (the last one being a higher harmonic) with
a break frequency at 1.77 Hz.

The rising and the declining phases of the outburst showed a very exciting feature.
The QPO frequency increased monotonically in the rising phase, while it is decreased
monotonically in the declining phase. In Fig. 6 we present the PDS for each day in the
rising phase. Arrows indicate the direction in which the date (marked in parenthesis as
dd/mm) increases. The observation IDs and the QPO frequencies are also shown in the
inset. In Chakrabarti et al. 2005, the trend of the rising phase has been discussed. In
Fig. 7, we present the PDS variation in the intermediate state. In the inset we mark
frequency at which the bump is formed in case QPO frequency was unavailable. The
variation of these frequencies seem to be a bit arbitrary. On the other hand, the variation
of PDS in the declining phase (Fig. 8) shows monotonically decreasing QPO frequency.
We discuss the implication of these interesting observations in the next Section.
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Figure 5. Fig. 5(a-b): Energy dependence of the PDS. The upper, middle and the lower
panels are for 2 — 4 keV, 4 — 30 keV and 30 — 60 keV respectively. (a) Data of 10th March,
2005 (ID: 90704-04-01-00). Both the soft and the medium energy X-rays show the 2.313 Hz
QPO, the power is higher in medium energy by fifty percent. (b) Data of 11th March, 2005 (ID:
91702-01-02-00G) shows that the QPO at 6.522Hz is exhibited only by hard photons (4 — 25
keV).

2.3 Spectral Analysis

For the spectral analysis we mainly used 3 - 25 keV “Standard 2” mode data from
RXTE Proportional Counter Unit 2 (PCU2). In general, black hole energy spectra (2-25
keV) are modeled with ‘diskbb’ and ‘power-law’ components, though some times best fit
could be obtained when a Gaussian around 6.5keV (Iron-line) was used. The results of the
150 PCA observations of 122 days are listed in Table 3. Here, we listed the components
required for spectral fits, i.e., the disk black body Temperature T;, in keV (Col. 2),
normalization factor for black body fit (Col. 3), power-law photon index I' (Col. 4),
power-law normalization (Col. 5), disk black body flux in 3 - 10 keV (Col. 6), the power-
law flux in 10 - 25 keV (Col. 7), the total flux in 3 - 25 keV (Col. 8) and the reduced x?
(Col. 9). After fitting a spectrum, we have used the “error” command to calculate +/-
error for the fitted parameters. All the error values are of 1o confidence level. For errors
bars on flux values, we use flux “LE HE err” to calculate +/- error & flux for the energy
range of LE and HE (in keV). We have put the parameter values up to 4 significant digits.
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We provide the error bar in each column. The error bars were Fluxes are listed in
units of number of photon counts/cm?/sec. From the nature of the variation of the power-
law indices and the disk black body components, we classified the full outburst into four
spectral states: (i) Hard state from from 25th of February, 2005 (MJD = 53426) to 12th
of March, 2005 (MJD = 53441); (ii) Soft/Very soft state from 13th of March, 2005 (MJD
= 53442) to 15th of May, 2005 (MJD = 53505). (iii) Intermediate state is from 16th of
May, 2005 (MJD = 53506) to 11th of September, 2005 (MJD = 53624) and finally (iv)
Hard state from the 12th of September, 2005 (MJD = 53625) till 16th of October, 2005
(MJD = 53659). We kept the hydrogen column density (Ng) fixed at 7.5x 10%! atoms
cm~2 and the systematics at 0.01.

Daily variations of the fitted parameters presented in Table 3 are plotted in Fig. 9
which clearly reveals the justification of separating the full outburst in the above men-
tioned four states. The panels (a-d) are respectively the black body temperature Ty, in
keV, the black body normalization factor, the photon index I' and the power-law normal-
ization (plotted in the log scale along Y-axis). Daily variations of the total flux (panel
a), black body flux (panel b) and the power-law flux (panel c) are shown in Fig. 10. The
panel (d) shows how the ratio of the black body to total flux changes daily. Generally in
the soft and very soft states the ratio is almost unity, indicating the dominance of the soft
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Fig. 6: Variation of the PDS with QPO frequencies marked in the hard state of the rising phase
from 25th of February, 2005 to 11th of March, 2005. The dates (dd/mm), the observation ID
and the frequency of the QPO are in the inset. Arrows indicate the direction in which the dates
are increasing.

component in both of these divisions. However, in Fig. 9, we observe a distinct differ-
ence in power-law normalization and power-law index in these two states. The QPOs are
observed only in certain days of the intermediate state. It may be noted that I obtained
right in the middle of the soft/very soft state is unphysically high (> 4). We believe
that this is due very poor statistics (e.g., only one good PCU of RXTE was working and
photon energy was > 20keV) rather than any unusual absorbtion at high energies. We
find that other workers (Saito et al. 2006) also reported a high photon index for these
observations.

We have already discussed the daily variation of the spectral index and flux com-
ponents. It is instructive to study the nature of the complete spectrum itself which we
plot in Figs. 11(a-e). In the left panels of each Figure we show the fitted spectrum
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Fig. 7: Same as in Fig. 6, except that the data of the intermediate state from the 16th of May,
2005 to 27th of May, 2005 was chosen.

with individual components (marked on the curves) and in the right panel we show the
normalized counts/s/keV and the reduced 2, variation. In Fig. 11(e), the component
marked ‘Compton’ comes from fitting with ‘CompST’ model which represents a Compton
cloud which is different from the cloud generating the power-law. These components were
chosen so as to get a minimum value of reduced x2. To find out the requirement of extra
model component to fit the data, is carried out with the F-test task. F-test results are
summarized in the Table 4. We chose the combination of the components for which the
F-test probability is lowest (see, Col. 6).

Insets show the average x2.;. The Figures are drawn with data on the 10th March
(Id: 90704-04-01-00), (b) 11th March, 2005 (ID: 91702-01-02-00G), (c) 20th March, 2005
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Fig. 8: Same as Fig. 6 except that the data of the decline phase of the outburst from 15th
of September, 2005 to 5th of October, 2005 was chosen. Frequency is seen to be decreasing
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(ID: 91702-01-08-00), (d) 17th May, 2005 (ID: 91702-01-57-00G), and (e) 17th September,
2005 (ID: 91702-01-79-00). Figure symbols have their usual meanings. What we see is
that in the hard states the cooler ‘Compton’ component is missing, while towards the
end of the ‘intermediate’ state and the beginning of the hard state of the decline phase
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this component shows up, albeit of decreasing importance.
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Fig. 9: Fitted parameters of RXTE 3 - 25 keV PCA Spectra plotted with time (MJD). The
panels are: (a) disk black body temperature (T;y) in keV, (b) disk black body normalization, (c)
Power-Law Photon Index (I') and (d) Power-Law normalization plotted with day. Logarithmic
scale was used in the y-axis and the error bars are at 1o level.

3. Brief interpretation of the results

GRO 1655-40 is a typical outburst source which was observed very regularly with one of
the most successful X-ray instruments till date. The detailed results of RXTE that we
presented reveal several very important aspects of the nature of the transient accretion
process around a black hole. From the light curves, hardness/softness diagrams, spectral
slopes and most importantly the variation of the QPO frequency, one can come up with
very comprehensive picture of what might be happening when such an outburst takes
place.

First, we concentrate on the rising and decline phases of the outburst. If we make
the most natural assumption that rushing in of matter towards a black hole is the cause
of the outburst, then during rising phase the matter is increasing while in the decline
phase the matter is evacuated with little fresh supply. The formation of strong QPOs
and the smooth variation of QPO frequencies during the outburst (Chakrabarti et al.
2005, 2008) indicates that the cause of QPO is identical each day and is related to the
a dynamical property of the infalling matter. While a popular model for low frequency
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Fig. 10: Derived properties of the daily flux variation are shown. The panels are: (a) 3 - 25
keV total flux, (b) 3-10 keV bolometric disk black body flux, (c) 10-25 keV power-law flux and
(d) the ratio of the total and power-law fluxes. In the soft/very soft and intermediate states the
total flux is dominated by the black body flux. Only in hard states of the rising and declining
phases the ratio is less than unity. Here we use logarithmic scale along the y-axis.

QPO assumes the motion of a perturbation or blob at the inner edge of a Keplerian disk
(e.g., Trudolyubov et al. 1999) it is difficult to imagine how a perturbation would sustain
itself against shear and dissipation for more than a few orbits, let alone more than two
weeks which we observe here. Because of this, we prefer the oscillating shock solution
inside a sub-Keplerian disk which has been demonstrated to have a stable oscillation for
many dynamical time scale (Molteni, Sponholz & Chakrabarti 1996; Ryu, Chakrabarti &
Molteni 1997; Chakrabarti & Manickam, 2000; Chakrabarti, Acharyya & Molteni 2004).
It is easy to verify that the QPO frequencies (which are inverses of the infall times from
the post-shock flow to the black hole) in the infalling phase are simply related, as though
the shock itself is drifting towards the black hole at a slow pace of ~ 20m/s (Chakrabarti
et al. 2005). In the decline phase, in the same way, the shock was found to recede, at
first very slowly (as though there was still some significant infalling matter) for about
three days, and then at an almost constant acceleration (Chakrabarti et al. 2008).

During the onset phase of more than two weeks, the disk got sufficient time to trans-
port angular momentum and a dominant Keplerian disk is formed which made the flow
soft or very soft. The rapid rise of the black body flux after the QPO disappears and
almost total absence of the hard photons testify to the rushing in of the Keplerian disk
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Table 2. Observed QPO fitted parameters.

RMS
Obs. UT Date v Av Q Amplitude
(1) (2) (3) (4) (5) (6)
1 25/02/05 0.082+5-007 0.01815:0%% 4.432 6.410
2 26/02/05 0.03415:51 0.01015-%03 3.269 5.021
2 26/02/05 0.10615528 0.03675-905 2.961 6.852
3 27/02/05 0.11619505 0.01775-502 6.824 4.908
4 27/02/05 0.05115-00% 0.02975:056 1.735 6.048
4 27/02/05 0.1225-00% 0.01319:005 9.760 5.312
5 28/02/05 0.05179 005 0.01550 005 3.446 3.845
5 28/02/05 0.12115-0% 0.01819-00° 6.612 5.441
6 02/03/05 0.03610 03 0.01170 007 3.396 4.464
6 02/03/05 0.10915-000 0.02875:0%7 3.838 5.718
7 02/03/05 0.04570005 0.02670 515 1.744 7.126
7 02/03/05 0.12970002 0.01279005 10.574 6.191
8 02/03/05 0.050*0:010 0.05010 617 0.998 8.946
8 02/03/05 0.11719:503 0.04170 520 2.875 7.535
9 02/03/05 0.12270:507 0.03370:002 3.754 9.433
10 02?03?05 01217080 o g T0.01% 1.977 7.795
11 03/03/05 0.163$§1§§§ 0'035$§1§§§ 4.644 6.362
12 04/03/05 0.1607¢; 0.01819 8.989 5.673
13 05?03?05 024770080 gg 0% 2.807 8.969
14 05/03/05 0.11615:00% 0.02810:000 4.099 4.326
14 05/03/05 0.317+5-002 0.07670:0%0 4.166 9.335
15 06,/03/05 0.38310-00% 0.10279:057 3.759 10.993
16 07;03;05 0.417$§;§§ 0.074}%;%? 6.608 9.374
17 07/03/05 0.14915-001 0.01570:00% 10.000 3.684
17 07/03/05 0.48710012 0.07410070 6.608 9.374
18 07/03/05 0.12510-00% 0.011+9:002 11.792 3.638
18 07/03/05 0.48710-50% 0.10279052 4.761 12.329
19 08/03/05 0.11915:502 0.00575-901 23.800 2.023
19 08/03/05 0.513%95:3 0.10715-951 4.803 12.926
20 08/03/05 0.033%95%) 0.00715:501 4.783 4.039
20 08/03/05 0.517+5-007 0.10079030 5.149 13.768
21 09?03?05 0.88670000 1370030 6.722 15.537
22 09/03/05 1.34910-00% 0.21370 057 6.342 19.040
23 10/03/05 0.08910:000 0.01479 007 6.449 2.529
23 10/03/05 1.52810:008 0.188700%4 8.132 18.639
24 10/03/05 2.03570-010 0.24370-0%5 8.357 19.935
25 10/03/05 2.31370 005 0.29870 023 7.762 19.994
25 10/03/05 4.62010008 0.45010 593 10.267 5.317
26 11/03/05 326270250 0.9897 0085 3.299 2.493
26 11/03/05 6.54670072 2.30570 333 2.840 6.017
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Table 2. Continued.

ate
) (2) Y Av Q RMS
(3) (4) 5) Amplitude
;; 12/03/05 145470320 Ay (6)
12/03/05 17 78;0:5%8 4667 354 9.915
o 16/05/05  18.1970200 14707038 12.09 2.146
o8 16/05/05 13'(1)2181%28 0.922+0236 19'732 2.149
29 17/05 Y2-0.200 1.248+0-144 ’ 0.825
o mwm o wadl ondl e o
2120 +0: : 0.5
01 17/05/05 18, 940130 0.70110:022 55 073 02
62 17/0 9% _0.120 0.245+0-002 0.420
/05/05 18.6510-240 —0.002 77.212
63 18 *PY-0.170 0_562+0.039 0.317
/05/05 6.566+0-110 —0.080 33.179
63 18/05/05 79184 0.721+3:97¢ 0111 0.722
ol 19/05/05 1830 70 1ag 3.28070 191 o 0.767
o 19/05/05 I 00827087 17 729 0.753
66 20/05/05 18'1918'&38 0.817jgigi§ 22'2 4 1.459
o o ekl e e voss
e 300l Lase 1033
75 25/0 3'5870:250 4,007+01306 438 1.097
/05/05 16.1319:320 —0.237 3.389
76 26/0 —0.300 4.01019-381 1.419
/05/05 16.63+0-350 0,196 4.022
7 26/05 —0.510 1.71110:032 1.442
/05 16.89+0-260 —0.027 9.719
78 27/05/05 +9:659 2.3434:(0)»338 = 20 0.696
123 15/09/05 16.75 0420 2.804+0 208 s 1.102
124 15/09/05 13.14181%28 4.007t81338 3.384 Lot
125 15 127270450 1_212-5-01755 -389 1.419
/09/05 9.863+0-039 —0.472 10.495
125 15/0 Tol036 0.79510:165 4.297
/ 9/05 20 20+0A560 —0.131 12.406
126 15/0 -4V _0.420 1.4531+0-421 7 878
/09/05 10.40+9:050 20323 13.902
127 16/0 Y _0.030 0.78310-164 4.192
/09/05 0.749+0:030 +o-164 13.982
127 16/09/05 29938 0.590jg-8;7 16.59 6.926
128 17/09/05 19'4018:8’58 0.749j83§g§ 25'909 6.493
128 1710905 0'20718"8‘13 o.o11jg:ggi 19-165 1.680
128 17/09/05 ?701;8%2 0,4574:%83% 19.()67 0.783
129 18/09/05 7782218: g«;fg) 0-900f8:8§§ 19-323 7.049
129 18/09 : —0.018 0,500+01052 : 2.711
05 : +0.
130 19/0 / 15'20-‘——8328 0.898'*'8'%2 15.663 7737
/09/05 474710023 —0.031 16.927
131 20/09/05 9 +9-922 0.677+0-074 007 2.760
133 21/09/05 1'44718“8%‘? 0.579jgi}3§ 2‘501 15.105
134 22/09/05 0.31418:8%2 0.316t8:8§$§ 4'160 13.857
135 23/09/05 0'5841818%3 0.14ojgiggg 4'163 10.945
136 25/09/05 0'41718:8%2 0~296f83(1)é§ 1'409 9.732
137 26,/0/05 0'22918:86% 01147005 2.005 12.048
0'14270'.00461 0,004+0100% 427 11.792
—0.001 39.444 9 583
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Table 2. Continued.

RMS
Obs. UT Date v Av Q Amplitude
(1) (2) ®3) (4) (5) (6)
139 28/09/05 0.12810:009 0.04215-007 3.070 7.682
140 29/09/05 0.10270 682 0.0247000% 4.232 8.701
141 30/10/05 0.03470 602 0.02179507 1.650 6.592
141 30/10/05 0.09410 602 0.06510 008 1.440 11.400
142 01/10/05 0.07370-00¢ 0.06270 505 1.185 11.902
143 02?10?05 0.06070008 0 a5 0008 (30 11.677
144 03/10/05  0.02370:902  13+0.004 1.729 6.633

+0.005 +0.006

144 03/10/05 0.05470 602 0.02370055 2.379 8.649
145 04/10/05 0.04810 00% 0.04210 005 1.151 10.512
146 05/10/05 0.03479 005 0.01979:005 1.744 8.707

towards the inner edge (Chakrabarti & Titarchuk 1995; Ebisawa et al. 1996). If we take
the two component advective flow (TCAF) model one step further and actually fit the
spectra of a few days spreaded during the outburst we observe, using the same procedure
that was followed in Chakrabarti & Mandal (2006), we can obtain the accretions rates
of matter in the Keplerian disk and the sub-Keplerian halo. Table 5 gives the rates in
units of Eddington rate on various days. It is clear that the Keplerian disk rate steady
increases from the beginning while the halo rate changes in a shorter time scale. At
the beginning, the halo rate was higher than the disk rate, but in the rest of the time,
until the very end the disk rate always dominates. In the soft and the very soft states,
the disk rate required to fit the spectra can be high reaching to about two Eddington
rates. The hardness/softness diagrams also give an idea of how the accretion rates in
the Keplerian and sub-Keplerian components could be changed on a daily basis. After
the very soft state is passed, the viscous processes became weaker and inflowing matter
which continues to accrete sporadically becomes dominant. The count rate rapidly fell
from tens of thousands to a few hundreds. QPOs started appearing only sporadically
in this state. The general trend of the declining inflow rate together with the lowering
of viscosity ensured the sucking in of the Keplerian matter. In the hard state of the
declining phase, the sub-Keplerian component became comparable to the Keplerian rate
giving rise to a strong power-law flux and QPOs.

In the literature, there are reports of other sources which exhibited similar outbursts.
For XTE J1550-564, a similar interpretation with TCAF and shock waves was found to
be very successful (Soria et al. 2001; Wu et al. 2002, Chakrabarti, Datta & Pal 2009).
The spectral state transitions in outburst sources appear to be fundamentally different
from those in a persistent source (such as Cyg X-1). In the latter case, the total flux
could be almost constant even during the state transitions (Zhang et al. 1996) where the
Keplerian and the sub-Keplerian rates could be redistributed during the state transition
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Table 5
Fitted data with two component flow model
Date MJD Halo rate  Disk rate
Mar. 3, 2005 53432.7930 0.015 0.0100
Mar. 9, 2005 53438.0539 0.004 0.0400
Mar. 10, 2005  53439.7400 0.009 0.0650
Mar. 11, 2005  53440.6780 0.0043 0.5100
Mar. 12, 2005  53441.5109 0.0100 0.7800
May 16, 2005 53506.9531 0.0550 1.5640
May 20, 2005 53510.0994 0.0560 1.7400
Sep. 16, 2005 53629.3761 0.0038 0.0700
Sep. 19, 2005 53632.4557 0.0029 0.0300
Sep. 22, 2005 53635.4696 0.0065 0.0140
Sep. 29, 2005 53641.0383 0.009 0.0100

and as a result the total flux could be almost constant. In outburst sources, on the other
hand, the approaching and receding Keplerian component in the rising and decline phases
causes the net flux to rise and fall during the hard to soft and intermediate to hard state
respectively.

4. Concluding remarks

In this paper, we presented a comprehensive analysis of the entire 2005 outburst of GRO
J1655-40. The results clearly indicated that the spectral state passed from the hard state
in the onset phase with a poor Keplerian component to the soft/very soft and intermediate
states dominated by Keplerian disks and finally to the hard state at the decline phase. It
is often believed that low frequency QPOs may be generated by perturbations at the inner
edge of a Keplerian disk, either by orbiting ‘blobs’ or more probably oscillating shocks.
Our observation of the smooth variation of the QPO frequency during the onset and the
decline phases indicates that whatever be the reason for QPO, it has to survive for weeks.
It is difficult to imagine that disk perturbation with blobs be sustained for such a long
time without being sheared and dissipated. On the other hand, shock oscillations have
been shown to survive for a long period and the PDS calculated from observations also
resembles the observed PDS. QPO frequencies at the onset and decline phases have been
shown separately (Chakrabarti et al. 2005, 2008, 2009) to be simply related as though an
oscillating shock is drifting in at the rising phase and drifting out at the decline phase.
We therefore favour the shock oscillation solution of the low and intermediate frequency
QPOs. Recently (Titarchuk, Shaposnikov & Arefiev 2007) have pointed out that the
presence of bumps in the PDS of Cyg X-1 is the signature of a sub-Keplerian flow in
the accretion disk. We have also observed similar bumps on days which have significant
halo component (see, Fig. 4c and Table 5). Thus we believe that the general picture
which emerged out of our analysis is consistent with a two component advective flow as
has been pointed out by many authors in the context of several black holes (Smith et
al. 2001; Smith, Heindl & Swank 2002; Smith, Dawson & Swank 2007). The TCAF
model is further supported by a clear indication of a jump in total flux at the state
transitions (hard to soft and intermediate to hard) in this source. This we believe is due
to the approaching and receding Keplerian component in the rising and declining phases.
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Fig. 11(a-d): 3-25 keV RXTE/PCA model fitted spectra with various components on the left
panels and the fitted reduced x2,; on the right panels. Data used are of (a) 10*" March, 2005
(Obs ID: 90704-04-01-00), (b) 11" March, 2005 (ID: 91702-01-02-00G), (c) 20" March, 2005
(ID: 91702-01-08-00), (d) 17*" May, 2005 (ID: 91702-01-57-00G) respectively.
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Fig. 11(e): Same as Fig. 11(a-d) except the data of 17" September, 2005 (ID: 91702-01-79-00)
was used.

This is in contrast with persistence X-ray sources, such as Cyg X-1, where the total flux
remains constant.
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