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Abstract. The nonlinear evolution of thermally unstable disturbances in
plasma are investigated within the framework of one-dimensional fluid equa-
tions. The processes of heating and radiative cooling (cooling function) of the
optically thin plasma are taken into account. A new statistical approach is
presented to study the thermal instability to the interstellar medium ISM of an
optically thin unmagnetized plasma. This approach makes possible to simplify
the set of equations describing the instability, and using Lagrangian coordinates,
to investigate the nonlinear dynamics of the instability analytically. The equa-
tions are solved both analytically and numerically by successive approximations
assuming a thermal conduction coefficient T and cooling function coefficient of
type T a − T b. We discuss the nonlinear development of the isobaric mode of
thermal instability in the atomic molecular clouds of ISM.
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1. Introduction

One of the most important and interesting dynamical processes in astrophysical plasma
and gases which are subject to some external heating and radiative cooling is the thermal
instability (Parker 1953; Field 1965). There are many physical situations where a steady
temperature distribution is maintained by means of basic energy transportation mecha-
nisms: heat diffusion, generation of heat into, and radiation of energy from a particular
configuration. Most theoretical efforts aimed at studying thermal instability were limited
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to the linear theory, treating unstable perturbations as small compared to the “unper-
turbed” quantities. A thorough analysis of this linear stage is the paper by Field (1965).
The nonlinear stage of the instability has been investigated in many papers numerically
(Goldsmith 1970; Schwarz 1972; Schmack & VanHoven 1991). In recent years, there has
been an increasing interest and activity in the investigation of the dynamics of coherent
structures and pattern formation in macroscopic systems. New methods of nonlinear
dynamics, Spatial chaos, and pattern theory have been developed by (Bishop, Campbell
& Channel 1984; Busse & Kramer 1990) and for general introduction to the methods of
nonlinear dynamics (Tabor 1989). The structure of the paper is as follow: In section 2,
we drive a set of simplified nonlinear equations. In section 3, we make a transition from
the Eulerain to Lagrangian coordinates and obtain a single nonlinear partial differential
equation for the evolution of the temperature of the unstable gas. In section 4, we briefly
analyze the limits corresponding to very small value of the thermal conductivity para-
meter. In section 5, we briefly analyze the possible steady state of the gas. Finally, in
section 6, the mentioned consideration will be generalized and solved in nonlinear regime,
analytically by ordinary differential equation (ODE).

2. The basic equations

Let us consider a one-dimensional flow of an ideal optically thin gas of density ρ, Tem-
perature T and velocity v under the action of a gradient of the pressure P ( gravity ,
magnetic field and other forces are neglected). The governing fluid equations have their
usual form (Field 1965):

∂ρ

∂t
+−→∇ · (ρ−→v ) = 0 (1)

ρ
D−→v
Dt

+−→∇ · −→P = 0 (2)

R

µ
ρT

Ds

Dt
= −ρL(ρ, T ) +−→∇ · (K−→∇T ) (3)

P =
R

µ
ρt (4)

where D
Dt is the Lagrangian derivative. Here L(ρ, T ) is the heat-loss function (the dif-

ference between the rate of the radiative cooling and the rate of heating per unit mass),
K(T ) is the thermal conductivity, µ is its effective molar mass, and R is the gas constant.
The heat-loss function is determined by the specific mechanisms of heating and cooling.
In the case of interstellar medium, the heating rate is determined by the absorption UV
and soft X-rays or cosmic rays, while radiative cooling rate is determined by various
processes (such as the inverse Compton cooling, Bremsstrahlung, atomic and molecular
processes and grain cooling ) depending on the temperature and density of the gas (for
details Pikelner 1979 ; Lepp 1985). Usually this function is written as,

L(ρ, t) = ρL(T )−G(ρ, T ) (5)
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where G and ρL the heating and cooling rate per unit mass. Field (1965) investigated
the initial, linear stage of this thermal runaway by means of the linearization of equations
(1)-(4). The linear theory of the instability predicts the exponential growth of small
initial perturbations. The necessary condition for the instability of the condensation
mode obtained by Field has the form below,

(
∂L

∂T

)

p

=
(

∂L

∂T

)

ρ

− ρo

To

(
∂L

∂P

)

T

< 0 (6)

To give a complete description of the nonlinear thermal runaway, one needs to solve
nonlinear fluid equations mentioned before. Being interested in the development of the
thermal instability in the interstellar medium, we put P = const and obtain the following
set of simplified equations

R

µ
(
γ − 1

γ
)Toρo

∂v

∂x
+ ρL(ρ, T )− ∂

∂x

(
K

∂T

∂x

)
= 0 (7)

ρT = ρoTo = const (8)

where γ is specific heat ratio of gas. Condition(8) makes it possible to eliminate the
density from equations (1) and (7). Now equations (1)-(4) can be written in a nondimen-
sional form if all the physical variables are scaled their representative values (Meerson
1989)

∂T

∂t
− T 2 ∂

∂x
(
v

T
) = 0 (9)

T
∂v

∂x
+ λ(T )− koT

∂

∂x
(k

∂T

∂x
) = 0 (10)

where λ(T ) is the dimensionless heat-loss function. Dimensionless equations (9)-(10)
describe the nonlinear evolution of the isobaric condensation mode. By solving equations
(9) and (10), we shall be able to determine the dimensionless density ρ(x, T ). Now Let
us proceed to the analysis of equations (9) and (10).

3. Equations in Lagrangian coordinates

It is well known that one of the most efficient methods of solving nonlinear fluid equations,
especially in the case of one-dimensional flows is the transition to Lagrangian coordinates
(Zeldovich 1967). It is convenient to introduce the Lagrangian mass variable

m =
∫ x

x1(t)

ρ(x, t)dx =
∫ x

x1(t)

T−1(x, t)dx (11)

where for all t the coordinate of a reference ”particle” x1(t) is determined by the condition
v(x1, t) = 0. Now let us transfer from variables x and t to new variables m and t. The
continuity equation (9) will assume a simple form

∂T

∂t
=

∂v

∂m
(12)



4 A.R. Khesali and M-A. Bagherian

While the isobaric thermal balance equation (10) will be as follows

∂v

∂m
+ λ(T )− ∂

∂m

(
K(T )

T

∂T

∂m

)
= 0. (13)

From equations (12) and (13) we have

∂T

∂t
+ λ(T )− ∂

∂m

(
K(T )

T

∂T

∂m

)
= 0 (14)

∂T

∂t
+ λ(T )− koT

∂

∂x
(K(T )

∂T

∂x
) = 0. (15)

Thus we have obtained a single nonlinear partial differential equation which describes the
evolution of the unstable gas temperature in the Lagrangian coordinates. If we succeed in
solving equations (14) and (15) if we find the temperature T (m, t) we can easily determine
the rest of the variables. The gas density is determined simply by

ρ(m, t) =
1

T (m, t)
(16)

4. Solution in limit of low thermal conductivity

This limit corresponds to very small values of the parameter ko → 0. Thus we obtain a
simple equation

∂T (m, t)
∂t

+ λ(T ) = 0 (17)

which can be integrated to give

t =
∫ To

T

dT

λ(T )
(18)

where To(m) = T (m, t = 0) is the initial form of the temperature perturbation in the
Lagrangian coordinates. In many cases we can model the heat-loss function λ(T ) by a
difference of two powers (Meerson 1989)

λ(T ) = T a − T b (19)

where the powers a and b can take any real values. The equilibrium point T = 1, described
by equations (17) and (19), can be easily seen to be unstable if a < b. It can also be seen
that two types of singularities may develop in an unstable gas described by an idealized
heating-cooling curve. The case a = 1, b = 2 is especially simple,

λ(T ) = T (1− T ) (20)

and it may be regarded as partially degenerate, because equation (17) becomes linear

dT

dt
+ T (1− T ) = 0 (21)
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Here we have an unstable equilibrium point T = 1 and a stable point T = 0. The
temperature and density of the gas is determined from equation (18)

T (m, t) =
[
1 +

(
1− To(m)

To(m)

)
et

]−1

(22)

ρ(m, t) = 1 +
(

1− To(m)
To(m)

)
et. (23)

It is clear from equation (22) that if we start from a perturbation, δT (m) = To(m) − 1
the regions with δT (m) > 0 will be heated and by choosing δT (m) < 0 that region will
be cooled. In this case, the heating rate of regions with δT (m) > 0 increase rapidly with
the temperature. Therefore the singularity of another type, T →∞ , will arise at a point
m∗ i.e.

t∗ = Ln

[
To(m∗)

To(m∗)− 1

]
. (24)

Another simple example, describing the same type of singularity, is provided by a localized
initial temperature perturbation

To(m) =
1 + m2

1 + m2 − α
, 0 < α < 1. (25)

Using formulae (22),(23) and (24), we obtain the following expressions for the variables
Lagrangian coordinates

T (m, t) =
1 + m2

1 + m2 − β
(26)

ρ =
1 + m2 − β

1 + m2
(27)

x(m, t) = m +
β√

1− β
tan−1 m√

1− β
(28)

where β = αet. Fig.1 shows the temporal evolution of the flow variables in this case.
Another simple example assumes To(m) = 1

1−α cos(m) , using formulae (22) and (23) we
obtain the following expressions for the flow variable in the Lagrangian coordinates

T (m, t) = (1− β cos(m))−1 (29)

ρ(m, t) = (1− β cos(m)) (30)

where β = αet, in the case of λ(T ) = T (1−T 2), The temperature of the gas is determined
by equation (17)

T (m, t) =
(

1 +
(

1
T 2

o (m)
− 1

)
e2t

)− 1
2

(31)
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Figure 1. Evolution of a localized initial perturbation(eq. [25]). The temperature and density

profiles are shown thrice, corresponding to, β = 0.9, (curve 3), β = 0.7( curve 2), β = 0.5

(curve 1).

and density of gas is given by

ρ(m, t) =
(

1 +
(

1
T 2

o (m)
− 1

)
e2t

) 1
2

(32)

where we have consider a perturbation in the form of, δT (m) = To(m)2 − 1. The regions
with T 2

o (m) > 1 will be heated and become infinite at m∗ at time,

t∗ =
1
2

ln
(

T 2
o (m∗)

T 2
o (m∗)− 1

)
(33)

Another example using initial Temperature

To(m) =
(

1
1 + m2 − ε

) 1
2

, 0 < ε < 1 (34)

using formulae (31) and (32) will give,

T (m, t) =
(
1 +

(
m2 − ε

)
e2t

)− 1
2 (35)

ρ(m, t) =
(
1 +

(
m2 − ε

)
e2t

) 1
2 (36)

Fig. 2 shows the temporal evolution of the flow variables in this case.

5. Thermal instability of the steady solution

In many cases that we have considered briefly, the heat conduction term and heat-loss
function in equations (14) and (15) play an important role in determining the nonlinear
dynamics of the instability and possible steady state of the gas. If the conductivity,
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Figure 2. Evolution of a localized initial perturbation(eq. [34]). The temperature and density

profiles are shown twice, corresponding to, 1−εe2t = 0.5, εet = 0.1, (curve 1), 1−εe2t = 0.1, εet =

0.1 (curve 2).

K(T ), is typically a function of T , the power law K ∝ Tn covers most cases of interest.
Zeldovich and Pikelner (1969) adopted the value n = 1

2 , appropriate when the thermal
conductivity is determined by the neutral diffusion. We introduce the variable u = Tn+1,
the situation satisfies equation (15)

∂u

∂t
= u∇2u− L(u, p) (37)

where L(u, p) = −(1 + n)Tnλ(T, p) and p = const. The steady states are described by
the equation (one- dimensional)

d2u

dx2
− L(u) = 0 (38)

if we chose L(u) = e−u , equation (38) can be simplified to

d2u

dx2
− e−u = 0. (39)

We introduce the variable e−u = w, under transformation to this new independent vari-
able we obtain

dw

dx
= e−u

(
−du

dx

)
= −w

du

dx
(40)

d

dx

(
dw

dx

)
= −dw

dx

du

dx
− w

d2u

dx2
⇒ d2w

dx2
=

1
w

(
dw

dx

)2

− w2. (41)

Substituting (39) in the equation (41), we obtain

w
d2w

dx2
−

(
dw

dx

)2

+ w3 = 0 (42)

If we assume
dw

dx
= f(w) (43)
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we have
d2w

dx2
=

1
2

df2

dw
. (44)

Using (42),(43)and (44) we obtain the following equation

w

2
df2

dw
− f2 + w3 = 0 (45)

Seeking a solution of the series form

f2 =
∞∑

n=0

anwn ⇒ df2

dw
=

∞∑
n=1

nanwn−1 (46)

and substituting (46) in the (45) leading to

ao = const, a1 = 0, a2 = const = k, a3 = −2, a4 = a5 = a6 = ..... = 0 (47)

from (47) and (48) we obtained

f2(w) = kw2 − 2w3, (48)

and from (43) and (48) obtained

x =
∫

dw

w
√

a− 2w
(49)

x =
2√
a

arccos
(√

a

2w
)
)

(50)

where k = a = const 6= 0, now from u = ln 1
w and (50), we obtained the following

u = ln


2 cos

(
x
√

a
2

)

a


 (51)

Fig.3, shows the u evolution of x.

6. Nonlinear instability analysis to trivial solution

Generally, for static configuration, pressure p is constant with respect to time, and there-
fore the equation of conservation of energy can be written as ( Elphick 1992)

∂T

∂t
= −λ(T ) +

∂

∂m

(
K(T )

T

∂T

∂m

)
. (52)

In many physical situations the quantities K(T ) can be written as a first approximation,
in the form below,

K(T ) = koT
α (53)
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Figure 3. Evolution of the temperature u = T n+1 of the unstable gas (eq. [51]): (a = 0.01).

where ko and α are known constants. For example, for thermal conduction by neutral
particles α = 1

2 (Parker 1953). For radiation thermal condition α = 13
2 (if ρ = const).

For K(T ) = T and λ(T ) = 1− T equation (52) can be written in the form as follows,

∂T

∂t
= T − 1 +

∂2T

∂m2
(54)

where α = 1 and ko = 1. Assuming a solution for equation (54) of the form

T (m, t) = To + g(m)ekt (55)
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where To is the background temperature of the medium and k is constant, one obtains

g(m) = A cos(wm) + B sin(wm) +
(1− To)e−kt

w
(56)

with the corresponding boundary conditions it will be assumed to be

m = 0 at g(m) = 1
m = 0 at dg

dm = 0. (57)

The equations (54) and (55) with boundary condition (57) has the solutions

T (m, t) = To + ekt − 1− To

w
cos(wm) +

1− To

w
(58)

where w =
√

1− k and w > 0. Fig.4 shows the temporal evolution.

In many physical situations the conductivity temperature K(T ) can be written in the
form below, (Ibanez & Plachco 1991).

K(T ) = koT
a (59)

where ko and a being known constants. Therefore equation (52) can be simplified to

∂y

∂t
= F (y) + yb ∂2y

∂m2
(60)

where ko = 1 and y = T a , F (y) = aT baλ(T ) , b = a−1
a .

We can model the heat-loss function by a difference of two power a = 2, b = 1
2 .

f(y) =
√

y − 1 (61)

using Eq.(61) and defining, ξ ≡ m− αt, with α = const, can be equation (61) as,

y′′ + α
y′√
y
− 1√

y
+ 1 = 0 (62)

where y′ = dy
dξ . We shall call this equation the associated ODE (ordinary differential

equation ). For the given autonomous equation, put y′ = p, it will become

dp

dy
=

(−αp−√y + 1
p
√

y

)
(63)

Now let z =
√

y − 1 in (63)to get

dp

dz
= −2

(
z + αp

p

)
. (64)
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Figure 4. The evolution of temperature for the unstable gas (eq. [58]), the line shows the

evolution coming from nonlinear theory, To = 1500, w = 2.

Equation (63) can be easily integrated by writing

− ln z + c =
∫

wdw

w2 + 2αw + 2
(65)

where c = const. The second integral (
∫

dw
w2+2αw+2 ) is found to be

∫
dw

(w2 + 2αw + 2)
=

(
1

2− α2

)−1
2

tan−1

[
w + 1

(2− α2)

]
, α2 < 2

− 1
w + α

, α2 = 2 (66)

1
(α2 − 2)

1
2

ln

[
w + α− (α2 − 2)

1
2

w + α + (α2 − 2)
1
2

]
, α2 > 2
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The initial conditions corresponding to equation (62)will be taken as

y(0) = y′(0) = 0 (67)

equation (62) with conditions (67) can be integrated to compute c,

c =
1
2

ln 2− α√
2− α2

tan−1

(
α√

2− α2

)
, α2 < 2 (68)

The intermediate integrals (66) and (65) do not admit further solution. The Taylor series
solutions for α = 1 about their first maxima are

y(ξ) = 1.08− 2.07× 10−2(ξ − ξo)2 + 6.6× 10−3(ξ − ξo)3

− 8.25× 10−4(ξ − ξo)4 + 3.14× 10−5(ξ − ξo)5

−1.37× 10−6(ξ − ξo)6 + 8.3×−7 (ξ − ξo)7 − 5.6×−8 (ξ − ξo)8 (69)

where ξo = ξ(m, t = o) . In this solution as we can see in spite of different values of ξ and
the first condition ξo, the medium will be hot or cool. For example when 0 < ξ < 1 and
ξ < ξo < 0 the medium will become slowly cool and dense, but by the condition 0 < ξ < 1,
0 < ξ < ξo, the medium becomes cool with more speed than the first condition.

7. Conclusions

In this paper, we have studied the dynamics of thermal conduction front in the interstellar
medium with parameters suitable to describe the general (ISM). The inclusion of radiative
losses affects both the dynamics and the structure of the conductive/cooling front. The
results of the present study shows that in the very small values of the parameter ko, the
“effective pressure” concept is inadequate. Instead, a consistent analysis requires the use
of the isobaric heating-cooling function (Lepp 1985), which provides a full description of
these limiting cases. The steady solution were obtained by analytical solving of equation
(14) and they were classified by means of two parameters: thermal conductivity and heat-
loss function. Finally, trivial solution and values of a, b, and α are fixed, the dimensions
of marginally stable slabs.
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