Bull. Astr. Soc. India (2007) 35, 163-167

On the source of cometary N_2^+ ions

P. P. Saxena*

Department of Mathematics and Astronomy, Lucknow University, Lucknow 226 007, India

Received 2 February 2007; accepted 30 May 2007

Abstract. The possibility of nitrous oxide (N₂O) molecules in Comet 1P/ Halley (Saxena 2004) is revisited in the light of theoretical considerations, its detection in hot molecular cores and observations of annealed Mg-silicate grains in comets to support its parent nature in other comets as well. Having a photolifetime $\geq 10^5$ s at 1 AU heliocentric distance (Huebner et al. 1992), N₂O may be the source of N₂⁺ ions in cometary tails. The detection of N₂O molecule in comets will have important implications on the nature of cometary parent molecules.

Keywords : comets: general

1. Introduction

Molecular nitrogen ion (N_2^+) can only originate from molecular nitrogen that has never been observed in any astronomical object. In interstellar clouds, it is inferred indirectly from modelling coupled with observations of N_2H^+ ion. As all the resonance lines of N_2 molecules are of wavelengths shorter than $Ly \cdot \alpha$ (A'Hearn & Festou 1990), in comets it is inferred from spectroscopic observations of N_2^+ ion in the visible region of the spectrum. If N_2^+ ions are produced from solar ionization of N_2 molecules sublimating from the cometary nucleus, they should have been detected spectroscopically in the cometary coma itself. Therefore, N_2^+ ions are unlikely to be produced from N_2 molecules in comets. The N_2 molecule is extremely volatile (sublimation temperature ~20 K) and is a non-polar molecule that is expected to diffuse easily from the cometary nucleus. In contrast N_2O is a polar molecule having a dipole moment = 0.2D which is comparable to that of CO (dipole moment = 0.1D) and is expected to be entrapped more effectively than N_2 in H_2O - ice of cometary nucleus.

^{*}E-mail: pps1939@hotmail.com

In the present work, the possibility of nitrous oxide (N₂O) as a parent molecule in comet 1P/Halley (Saxena 2004) has been extended to other comets in light of dynamics of the Solar nebula and resemblance of 10 μ m feature of annealed Mg-silicate smoke to the same feature of dust in comets.

2. Origin of nitrous oxide (N_2O)

There exists evidence of moderately high temperatures ≈ 1000 K prevailing in the innermost Solar nebula sometime during its lifetime and of large scale circular motions capable of transporting dust and gas from this region to distances beyond the snow line (Hugh et al. 2001). These conclusions are based, among other evidences, on almost identical resemblance of the 10 μ m IR feature of Mg-silicate smoke annealed to about 1000 K in the laboratory to the same feature of dust observed in Comet 1P/Halley, comet C/1995 OI (Hale-Bopp), Comet Bradfield and Comet Mueller (Hallenbeck et al. 1998).

Oxygen is thermodynamically more stable when it reacts with hydrogen to form water in an oxygen rich environment (O>C). In an oxygen poor environment (O<C), oxygen is tied up in CO. However, oxygen is tied up to nitrogen in three observed interstellar N-O bond molecules viz., NO, N₂O and HNO. Their production is, therefore, to be considered in the framework of gas phase ion-molecule and radical-radical reactions. In the inner Solar nebula the gas kinetic temperatures were sufficient to overcome the activation energy barrier of 19 meV (\cong 210 K) of the ion-molecule reaction between N⁺ ion and H₂ molecule to produce NH⁺ ion (Table1). This reaction has initially been discussed for the production of ammonia(NH₃) in interstellar clouds. The N⁺ ion results from direct ionization of N atom by cosmic rays and/or from the dissociative ionization of N₂ molecule by He⁺ ion. Once NH⁺ ion is produced, all other nitrogen hydride ions are produced unhindered. The dissociative electron recombination of the nitrogen hydride ions produces nitrogen hydride radicals and ammonia. The destruction of ammonia through cosmic ray generated He⁺ and H₃⁺ ions also leads to the production of nitrogen hydrides. The nitrogen hydrides in turn produce N₂O molecules from radical-radical reactions (Table 1).

According to the current hypothesis of circular motions in the Solar nebula, transporting material from its innermost part to regions beyond the snow-line (Hugh et al. 2001), the nitrous oxide (N₂O) produced in the central part of the nebula will likewise be transported along with the dust to the region beyond the snow-line in the nebula. In this region, the N₂O molecules like other volatiles are frozen on to the dust grains in the process of formation of cometesimals.

3. Expected abundance of N_2O in comets

The value of Q $(N_2)/Q$ $(H_2O)=2\times10^{-4}$ in the tail of 1P/Halley (Wyckoff et al. 1991; Wyckoff & Theobald 1989) probably is an over estimation of the ratio as the same is

164

derived from the low resolution spectra and modelling of the weak emission feature in the spectral region 3855 Å - 3950 Å that is a mixture of contributions from CO⁺, CO₂⁺ and N₂⁺ ions. The observations of N₂⁺ ions in the high resolution spectra of recent comets 122P/1995 S1 (de Vico), C/1995 O1 (Hale-Bopp) and C/2002 C1 (Ikeya-Zhang) have resulted only in upper limits of the ratio N₂⁺/CO⁺ viz. $\leq 10^{-5} - 10^{-4}$ (Cochran et al. 2000; Cochran 2002). The upper limits are suggestive of extremely low abundance of N₂⁺ ions that is inaccessible with the current instrumentation. Due to kinetic inhibition shown by N₂ and CO molecules, the ratio N₂⁺/CO⁺ roughly equals the ratio N₂/CO and that in turn translates to N₂/H₂O $\leq 10^{-6} - 10^{-5}$ in these comets assuming CO/H₂O ~0.1.

If N₂O is a parent of N₂ in comets and as $\tau(N_2O) \sim \tau(N_2)$, these upper limits would translate to N₂O/H₂O $\leq 10^{-6}$ - 10^{-5} in these comets. Since the fractional abundance of H₂O relative to H₂ is on the order of 10^{-4} in comets, we get N₂O/H₂ $\leq 10^{-10}$ - 10^{-9} , which is in fair agreement with the observed fractional abundance $\sim 10^{-9}$ of N₂O relative to H₂ in hot molecular cores Sgr B2 (M) and Sgr B2 (N) embedded in Sgr B2 cloud complex. (Zuirys et al. 1994; Halfen et al. 2001).

4. Discussion

In the scenario presented by the possible detection of annealed Mg-silicate dust in several comets, one can visualize a transportation mechanism operative from the central region of higher temperatures in the Solar nebula, the birth place of Mg-silicate dust, to regions of lower temperatures (Hugh et al. 2001) where comets are formed. During this journey, the dust grains and possibly other molecules including N₂O and H₂O molecules pass through the region ~5-6 AU from the centre of the nebula where the temperatures are \cong 100K. The laboratory studies show that at these temperatures the H₂O-ice is produced in amorphous form (Laufer et al. 1987). Due to the formation of hydrogen bonds, the polar gaseous molecule N₂O gets trapped in the cometary amorphous ice.

Nitrous oxide (N₂O) has been observed as an interstellar molecule in the hot cores of molecular clouds (Zuirys et al. 1994; Halfen et al. 2001). High temperature (~ 200–300K) chemistry is involved in the production of N₂O molecule as is evidenced in Sgr B2 cloud complex where N₂O is observed as confined exclusively to a region $\leq 45''$ centered on hot molecular core Sgr B2 (N) and where nearly identical distribution is found for the high energy (Ea ≈ 225 K) 14₀–14₋₁ E transition of CH₃OH (Halfen et al. 2001). Moreover, NH₃ has an abnormally high column density $\approx 10^{20}$ cm⁻² in Sgr B2(N).(Ohishi 1997) suggests that N₂O and NH₃ may be related. Indeed gas phase production of ammonia and also its destruction via cosmic-ray generated reactive ions viz. H₃⁺ and He⁺ both lead to the production of nitrogen hydrides NH and NH₂, the former produces N₂O from the neutral-neutral reaction: NH + NO \rightarrow N₂O + H (Halfen et al. 2001). The other hydride viz. NH₂ may also produce N₂O from the reactions (R18) and (R20) that need no activation energy (Table 1). First discussed in cometary context N₂O (Saxena 2004) has a photolifetime of $\geq 10^5$ s at 1AU heliocentric distance (Huebner et al. 1992). With

P. P. Saxena

Reaction Rate coefficient $(cm^3 s^{-1})$ Reaction Ref. No. $N + CR \rightarrow N^+ + e + CR$ ζ (R1)(1) $\mathrm{He^{+}} + \mathrm{N_{2}} \rightarrow \mathrm{N^{+}} + \mathrm{N} + \mathrm{He}$ 8.10(-10)(R2)(2) $N^+ + H_2 \rightarrow NH^+ + H$ (R3)4.80(-10)(3) $\mathrm{NH^+} + \mathrm{H_2} \rightarrow \mathrm{NH_2^+} + \mathrm{H}$ (R4) $\mathrm{NH}_2^+ + \mathrm{H}_2 \rightarrow \mathrm{NH}_3^+ + \mathrm{H}_3$ (R5)2.70(-10)(4)(R6) $\mathrm{NH}_3^+ + \mathrm{H}_2 \rightarrow \mathrm{NH}_4^+ + \mathrm{H}$ 2.00(-12)(4)1.10 (-10) $NH_3^+ + H_2O \rightarrow NH_4^+ + OH$ (R7)(4) $6.80(-7)(T/300)^{-0.6}$ (R8) $\mathrm{NH}_4^+ + \mathrm{e} \to \mathrm{NH}_3 + \mathrm{H}$ (4)(R9) $\rightarrow \mathrm{NH}_2 + \mathrm{H}_2$ $6.80 (-7) (T/300)^{-0.6}$ (4) $\mathrm{NH}_3 + \mathrm{H}_3^+ \to \mathrm{NH}_4^+ + \mathrm{H}_2$ (R10)2.70(-9)(4) $NH_3 + He^+ \rightarrow NH_3^+ + He$ (R11)2.64(-10)(4) $NH_3^+ + e \rightarrow NH_2 + H$ $3.00 (-7) (T/300)^{-0.5}$ (R12)(4) $\rightarrow \mathrm{NH} + \mathrm{H}_2$ $3.00 (-7) (T/300)^{-0.5}$ (R13)(4) $1.50 (-7)(T/300)^{-0.5}$ $\mathrm{NH}_2^+ + \mathrm{e} \rightarrow \mathrm{NH} + \mathrm{H}$ (4)(R14) $\rm NH + O \rightarrow \rm NO + H$ 1.16(-10)(R15)(5) $\rm NH + OH \rightarrow \rm NO + H_2$ (R16)3.98 (-11) (5) $\rm NH_2 + O \rightarrow \rm NO + H_2$ (R17)8.30(-12)(5) $\rm NH_2 + \rm NO \rightarrow \rm N_2H + \rm OH$ 6.59(-13)(5)(R18)(R19) $\rm NH + \rm NO \rightarrow \rm N_2O + \rm H$ $(1-3) \times 10 (-11)$ (6)125K<T<300K (R20) $N_2H + O \rightarrow N_2O + H$ 1.67(-10)(5)

Table 1. Main reactions showing the production of nitrogen hydrides and N_2O molecule in solar nebula.

Note: $q(p) = q \times 10^p$, (1): $\zeta = 2.7(-17) \text{ s}^{-1}$ (Greadel et al. 1982), (2): Huntress W.T. 1977 (3): Adams & Smith 1985, (4): Millar et al. 1997, (5): Warnatz et al. 1996 (6): Halfen et al. 2001.

a speed of $\sim 1 \text{km s}^{-1}$, it could reach beyond the cometary coma into the tail of a comet where solar photodissociation followed by solar ionization and/or charge exchange with solar wind α -particles produce N_2^+ ions.

Nitrous oxide in cometary context assumes importance as its positive detection, besides being consistent with the current hypothesis of the Solar nebula, may be used as a diagnostic for chemically processed molecules residing in the cometary nucleus. The other N-O bond molecule viz. NO has been reported in Comet 1P/Halley (Geiss et al. 1991)

166

This in turn will have important implications on the nature of cometary parent molecules that are generally believed to be formed only from gas - grain surface chemistry.

5. Conclusions

The arguments presented here and elsewhere (Saxena 2004) for N_2O instead of N_2 as a cometary parent molecule that is responsible for cometary N_2^+ ions are consistent with theory and observations on comets. The detection of N_2O molecules in future comets is of utmost importance as it will also have implications on the nature of cometary parent molecules.

References

- A'Hearn, M. F., & Festou, M. C., 1990, Physics and Chemistry of Comets, ed. W. F. Huebner, Springer-Verlag, 103
- Adams, N. G., & Smith, D., 1985, CPL, 117, 67
- Cochran, A. L., Cochran, W. D., & Barker, E. S., 2000, Icar., 156, 583
- Cochran, A. L., 2002, ApJ, 576, L165
- Geiss, J. et al., 1991, A&A, 247, 226

Graedel, T. E., Langer, W. D., & Frerking, M. A., 1982, ApJS, 48, 321

- Halfen, D. T., Apponi, A. J., & Ziurys, L. M., 2001, ApJ, 561, 244
- Hallenbeck, S. L., Nuth, J. A., & Dankantas, P. L., 1998, Icar., 131, 198
- Huebner, W. F., Keady, J. J., & Lyon, S. P. (eds) 1992, Solar Photorates for Planetary Atmospheres and Atmospheric Pollutants, Kluwer: Dordrecht
- Hugh, G. M. H. et al., 2001, Proc. National Academy of Sciences of USA (PNAS), Vol. 98, No. 5, 2182
- Huntress, W. T Jr., 1977, ApJS, 33, 495
- Laufer, D., Kochavi, E., & Bar-Nun, A., 1987, PhR., 36, 9219
- Millar, T. J., Farquhar, P. R. A., & Willacy, K., 1997, A&AS, 121
- Ohishi, M., 1997, IAU Symp. 178, ed. E. F.van Dishoeck, Kluwer: Dordrecht, The Netherlands Saxena, P. P., 2004, BASI, 32, 185
- Warnatz, J., Mass, U., & Dibble, R. W., 1996, Combustion, Springer, 79
- Zuirys, L. M. et al., 1994, ApJL, 436, L181