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Property of Tsallis entropy and principle of entropy
increase
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Abstract. The property of Tsallis entropy is examined when considering
two systems with different temperatures to be in contact with each other and
to reach the thermal equilibrium. It is verified that the total Tsallis entropy of
the two systems cannot decrease after the contact of the systems. We derived
an inequality for the change of Tsallis entropy in such an example, which leads
to a generalization of the principle of entropy increase in the framework of
nonextensive statistical mechanics.
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1. Introduction

In recent years, a generalization of Boltzmann-Gibbs(B-G) statistical mechanics initiated
by Tsallis has focused a great deal of attention, the results from the assumption of
nonadditive statistical entropies and the maximum statistical entropy principle, which
has been known as nonextensive statistical mechanics (NSM) (Abe & Okamoto 2001).
This generalization of B-G statistics was proposed firstly by introducing the mathematical
expression of Tsallis entropy (Tsallis 1988) as follows:

Sq =
k

1− q

(∫
ρqdΩ− 1

)
(1)

where k is the Boltzmann’s constant. For a classical Hamiltonian system, ρ is the phase
space probability distribution of the system under consideration that satisfies the normal-
ization

∫
ρ dΩ = 1 and dΩ stands for the phase space volume element. The entropy index
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q is a positive parameter whose deviation from unity is thought to describe the degree of
nonextensivity. The conventional B-G entropy SB is obtained as the limit q → 1,

SB = lim
q→1

Sq = −k

∫
ρ ln ρ dΩ. (2)

One distinctive difference between Tsallis entropy Sq and B-G entropy SB lies in its
pseudo-additive property. If a and b are two independent systems in the sense that the
probability distribution of a + b factorizes into those of a and of b, then Tsallis entropy
of the composite system a + b can be expressed by

Sq(a + b) = Sq(a) + Sq(b) + (1− q)Sq(a)Sq(b)/k. (3)

Such a generalization may address the nonextensive systems with long-range interac-
tions, long-range microscopic memory, and fractal or multifractal relevant space-time.
It retains some of the structure of the standard theory such as the Legendre trans-
form structure, H theorem, Onsager reciprocity theorem, fluctuation-dissipation theo-
rem, zeroth law of thermodynamics, equipartition and virial theorem etc. (please see
http://tsallis.cat.cbpf.br/biblio.htm). Some applications of NSM in the astrophysical
self-gravitating systems (Du 2006, 2007 and references therein) and in the plasma sys-
tems (Du 2004 and the references therein; Lavagno & Quarati 2006; Shaikh et al. 2007)
with the long-range interactions have been investigated.

When the traditional B-G statistical mechanics is generalized, it is most important to
establish consistency of the new theory with the basic principles of thermodynamics. In
this paper, we study the principle of entropy increase by using Tsallis entropy in the NSM
and try to give a mathematical formulation about the second law of thermodynamics in
the framework of NSM.

2. Entropy increase in B-G statistics

In B-G statistical mechanics, the principle of entropy increase is known as a mathematical
formulation of the second law of thermodynamics. It states that when a system undergoes
an adiabatic process its entropy can never be decreased, the entropy is unchanged if the
process is reversible, or the entropy increases if the process is irreversible. The principle of
entropy increase can be verified from the canonical ensemble theory by studying changes
of the entropy if two systems with different temperatures are in contact with each other
and be in thermal equilibrium.

We consider two extensive systems, their equilibrium properties are determined by the
canonical probability distribution ρ1 and ρ2, and the corresponding phase space volume
elements are denoted by dΩ1 and dΩ2, respectively. Without the contact, the two systems
are independent and are regarded as one system. The probability distribution for the total
system and phase space volume elements are ρ0 = ρ1ρ2 and dΩ = dΩ1dΩ2, respectively,
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and the total entropy is considered in terms of the additivity as

SB0 = −k

∫
ρ1 ln ρ1dΩ1 − k

∫
ρ2 ln ρ2dΩ2 = −k

∫
ρ0 ln ρ0dΩ (4)

with ρ1 = 1
Z1

e−β1H1 and ρ2 = 1
Z2

e−β2H2 . The energy of every subsystem is expressed,
respectively, by

< H1 >=
∫

ρ1H1dΩ1 =
∫

ρ0H1dΩ; < H2 >=
∫

ρ0H2dΩ. (5)

After the contact, the new equilibrium in the total system is determined by the canonical
probability distribution ρ = 1

Z e−βH . The corresponding entropy is given as

SB = −k

∫
ρ ln ρdΩ. (6)

Then, the change of B-G entropy can be calculated by

SB − SB0 = k

∫
(ρ0 ln ρ0 − ρ ln ρ)dΩ

= k < X(ρ0, ρ) >0 −k

∫
(ρ− ρ0) ln ρdΩ

= k < X(ρ0, ρ) >0 −kβ

∫
(ρ− ρ0)HdΩ (7)

where X(ρ0, ρ) = ln ρ0 − ln ρ and < X(ρ0, ρ) >0=
∫

ρ0X(ρ0, ρ)dΩ. It has been verified
(Wang Zhuxi 1965) that the inequality < X(ρ0, ρ) >0≥ 0 is always satisfied and the
equality holds if and only if we have ρ = ρ0. Suppose the interaction between the two
subsystems is small so that we can write H = H1 + H2 and, after the contact, the total
energy is unchanged, then the second term on the right hand side of Eq.(7) vanishes, we
have

SB − SB0 ≥ 0. (8)

The two subsystems being in contact with each other can be regarded as an isolated
system, in which any processes taking place can be treated as the adiabatic ones. This
inequality shows that the entropy cannot be decreased in the adiabatic processes. The
entropy is unchanged only if ρ = ρ0, which holds only if the two systems have the same
temperature: β1 = β2 = β. The inequality (8) can be thought as the mathematical
expression of the principle of entropy increases in the above example.

3. Principle of entropy increase for the nonextensive system

Now we deal with the property of Tsallis entropy for nonextensive systems and try to
give a generalization of the principle of entropy increase, Eq. (8). We consider two
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nonextensive systems with different temperatures and with the Hamiltonians H1 and H2,
respectively. Their Tsallis’ entropies are given, respectively, by

Sq1 =
k

1− q

(∫
ρq
1dΩ1 − 1

)
; Sq2 =

k

1− q

(∫
ρq
2dΩ2 − 1

)
. (9)

In NSM, the corresponding optimal probability distributions and the generalized canon-
ical partition functions (Tsallis 1998), respectively, to be

ρ1 =
1

Zq1
[1− (1− q)β∗1(H1 − Uq1)]

1
1−q ; (10)

ρ2 =
1

Zq2
[1− (1− q)β∗2(H2 − Uq2)]

1
1−q (11)

Zq1 =
∫

[1− (1− q)β∗1(H1 − Uq1)]
1

1−q dΩ1 (12)

Zq2 =
∫

[1− (1− q)β∗2(H2 − Uq2)]
1

1−q dΩ2 (13)

where Uq1 and Uq2 are given in terms of the constraints on the generalized internal energy
< H1 >q and < H2 >q, defined by the normalized q-expectation values,

Uq1 =< H1 >q=
∫

ρq
1H1dΩ1/

∫
ρq
1dΩ1, (14)

Uq2 =< H2 >q=
∫

ρq
2H2dΩ2/

∫
ρq
2dΩ2. (15)

β∗1 = β1/
∫

ρq
1dΩ1 and β∗2 = β2/

∫
ρq
2dΩ2 with β1 and β2 the Lagrange multipliers associ-

ated with the two energy constraints above, respectively. β1 and β2 are identified with
their inverse temperatures.

Without the contact, the two nonextensive systems are independent. The probability
distribution function and the phase space volume element of the total system are ρ0 =
ρ1ρ2 and dΩ = dΩ1dΩ2, respectively. The total energy is

Uq1 + Uq2 =
∫

ρq
0(H1 + H2)dΩ/

∫
ρq
0dΩ. (16)

Tsallis’ entropy of the total system satisfies the pseudoadditivity of Eq. (3), namely

Sq0 = Sq1 + Sq2 +
1− q

k
Sq1Sq2 =

k

1− q

(∫
ρq
0dΩ− 1

)
. (17)

After the contact and being in thermal equilibrium, new Tsallis’ entropy Sq of the to-
tal system is expressed by Eq. (1) with the optimal probability distribution and the
generalized canonical partition function, respectively,

ρ =
1
Zq

[1− (1− q)β∗(H−Uq)]
1

1−q ; (18)



Property of Tsallis entropy and principle of entropy increase 695

Zq =
∫

[1− (1− q)β∗(H − Uq)]
1

1−q dΩ (19)

where H is the new Hamiltonian of the total system, Uq is the normalized q-expectation
value of the total energy, Uq =< H >q=

∫
ρqHdΩ/

∫
ρqdΩ, and β∗ = β/

∫
ρqdΩ with

β the Lagrange multiplier associated with this energy constraint and identified with the
inverse temperature T of the total system. Then, the change of the entropy after and
before the contact of the two nonextensive systems can be calculated as

Sq − Sq0 =
k

1− q

∫
(ρq − ρq

0)dΩ =
k

1− q

∫
ρq

[
1−

(
ρ0

ρ

)q]
dΩ. (20)

Let Xq(ρ0, ρ) = k[1− (ρ0/ρ)q]/(1− q) and cq =
∫

ρqdΩ, Eq. (20) becomes

Sq − Sq0 = cq < Xq(ρ0, ρ) >q (21)

where we have introduced the so-called q-expectation value of Xq(ρ0, ρ) by < Xq >q=∫
ρqXqdΩ/

∫
ρqdΩ. It is further written as

< Xq >q =
1
cq

k

1− q

∫
ρq[1− (ρ0/ρ)q]dΩ =

=
k

1− q

∫
ρ[1− (ρ0/ρ)q]dΩ− 1

cq

k

1− q

∫
(ρq − ρq

0)(cqρ
1−q − 1)dΩ

= < Xq > +
kβ∗

cq

∫
(ρq − ρq

0)(H − Uq)dΩ (22)

where < Xq >=
∫

ρXqdΩ is the standard expectation value of Xq(ρ0, ρ). With (ρ0/ρ) >
0, q > 0, we find the inequality,

Xq =
k

1− q

[
1−

(
ρ0

ρ

)q]
≥ qk

1− q

[
1−

(
ρ0

ρ

)]
, (23)

and the equality holds if and only if ρ = ρ0. Consequently, we have, for q > 0,

< Xq >≥ 0. (24)

If the interaction between the two nonextensive subsystems is small so that, after the
contact, the Hamiltonian of total systems can be still written as H = H1 + H2 and the
total energy remains unchanged, namely

∫
ρqHdΩ∫
ρqdΩ

=
∫

ρq
0HdΩ∫
ρq
0dΩ

(25)

then the second term on the right-hand side of Eq. (22) vanishes. From Eq. (21) we find
that the inequality for Tsallis entropy becomes

Sq − Sq0 ≥ 0. (26)
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This inequality shows that, after the two nonextensive systems are in contact with each
other and reach the thermal equilibrium, the total Tsallis entropy cannot decrease, and
it is unchanged if and only if ρ = ρ0. The two systems being in contact with each other
can be treated as an isolated system, in which any processes taking place inside the
system can be regarded as adiabatic ones. Thus, we have verified the principle of entropy
increase for Tsallis entropy in the above example of nonextensive systems and have made
the generalization of the inequality (8) in the framework of NSM.

4. Conclusion

In conclusion, we have studied the property of Tsallis entropy and have examined the
principle of entropy increase in the framework of NSM. By considering two nonexten-
sive systems with different temperatures in contact with each other and are in thermal
equilibrium, we investigate the change of Tsallis’ entropy. We demonstrate that, after
the contact, the Tsallis entropy of the total nonextensive system cannot decrease, which
leads to a generalization of the principle of entropy increase in the framework of NSM.

Additional remarks: The definition of heat in NSM was suggested by Rajagopal (2003)
with density matrix in the quantum theory and a similar formulation to the Clausius’
inequality was established by Abe & Rajagopal (2003) in the framework of nonextensive
quantum thermodynamics.
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