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1. Entropic pathway

Mathai & Rathie (1975) consider a number of generalizations of Shannon entropy (Shan-
non 1948), called entropies of order α, and give various properties, including additivity
property, and characterization theorems. Recently, Mathai & Haubold (2006, 2006a) ex-
plored a generalized entropy of order α, which is connected to a measure of uncertainty in
a probability scheme, Kerridge’s (Kerridge 1961) concept of inaccuracy in a scheme, and
pathway models that are considered in this paper. It is shown that such a generalized
entropy can be used to explore pathways of entropies, respective distribution functions,
and related differential equations.

As defined in Mathai & Haubold (2006, 2006a) the entropy Mk,α(P ) is a non-additive
entropy and his measure M∗

k,α(P ) is an additive entropy. It is also shown that maximiza-
tion of the continuous analogue of Mk,α(P ), denoted by Mα(f), gives rise to various
functional forms for f , depending upon the types of constraints on f .

Occasionally, emphasis is placed on the fact that Shannon entropy satisfies the addi-
tivity property, leading to extensivity. It will be shown that when the product probability
property (PPP) holds then a logarithmic function can give a sum and a logarithmic func-
tion enters into Shannon entropy due to the assumption introduced through a certain
type of recursivity postulate. The concept of statistical independence will be examined
in Section 1 to illustrate that simply because of PPP one need not expect additivity to
hold or that one should not expect this PPP should lead to extensivity. The types of
non-extensivity, associated with a number of generalized entropies, are pointed out even
when PPP holds. The nature of non-extensivity that can be expected from a multivariate
distribution, when PPP holds or when there is statistical independence of the random
variables, is illustrated by taking a trivariate case.

Maximum entropy principle is examined in Section 2. It is shown that optimization
of measures of entropies, in the continuous populations, under selected constraints, leads
to various types of models. It is shown that the generalized entropy of order α is a
convenient one to obtain various probability models.

Section 3 examines the types of differential equations satisfied by the various special
cases of the distributional and thus entropic pathway model.

1.1 Product probability property (PPP) or statistical independence of events

Let P (A) denote the probability of the event A. If the definition P (A∩B) = P (A)P (B)
is taken as the definition of independence of the events A and B then any event A ∈ S,
and S the sure event are independent. But A is contained in S and then the definition
of independence becomes inconsistent with the common man’s vision of independence.
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Even if the trivial cases of the sure event S and the impossible event φ are deleted, still
this definition becomes a resultant of some properties of positive numbers. Consider a
sample space of n distinct elementary events. If symmetry in the outcomes is assumed
then we will assign equal probabilities 1

n each to the elementary events. Let C = A ∩B.
If A and B are independent then P (C) = P (A)P (B). Let

P (A) =
x

n
, P (B) =

y

n
, P (C) =

z

n
.

Then (x

n

)( y

n

)
=

( z

n

)
⇒ nz = xy, x, y, z = 1, 2, ..., n− 1, z < x, y (1)

deleting S and φ. There is no solution for x, y, z for a large number of n, for example,
n = 3, 5, 7. This means that there are no independent events in such cases and it sounds
strange from a common man’s point of view.

The term “independence” of events is a misnomer. This property should have been
called product probability property or PPP of events. There is no reason to expect the
information or entropy in a joint distribution to be the sum of the information contents
of the marginal distributions when the PPP holds for the distributions, that is when the
joint density or probability function is a product of the marginal densities or probability
functions. We may expect a term due to the product probability to enter into the ex-
pression for the entropy in the joint distribution in such cases. But if the information or
entropy is defined in terms of a logarithm, then naturally, logarithm of a product being
the sum of logarithms, we can expect a sum coming in such situations. This is not due
to independence or due to the PPP of the densities but due to the fact that a functional
involving logarithm is taken thereby a product has become a sum. Hence not too much
importance should be put on whether or not the entropy on the joint distribution becomes
sum of the entropies on marginal distributions or additivity property when PPP holds.

1.2 How is logarithm coming in Shannon’s entropy?

Several characterization theorems for Shannon entropy and its various generalizations
are given in Mathai & Rathie (1975). Modified and refined versions of Shannon’s own
postulates are given as postulates for the first theorem characterizing Shannon entropy
in Mathai & Rathie (1975). Apart from continuity, symmetry, zero-indifference and
normalization postulates the main postulate in the theorem is a recursivity postulate,
which in essence says that when the PPP holds then the entropy will be a weighted sum of
the entropies, thus in effect, assuming a logarithmic functional form. The crucial postulate
is stated here. Consider a multinomial population P = (p1, ..., pm), pi > 0, i = 1, ..., m,
p1+ ...+pm = 1, that is, pi = P (Ai), i = 1, ..., m, A1∪ ...∪Am = S, Ai∩Aj = φ, i 6= j. If
any pi can take a zero value also then zero-indifferent postulate, namely that the entropy
remains the same when an impossible event is incorporated into the scheme, is to be
added. Let Hn(p1, ..., pn) denote the entropy to be defined. Then the crucial recursivity
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postulate says that

Hn(p1, ..., pm−1, pmq1, .., pmqn−m+1)
= Hm(p1, ..., pm) + pmHn−m+1(q1, ..., qn−m+1) (2)

∑m
i=1 pi = 1,

∑n−m+1
i=1 qi = 1. This says that if the m-th event Am is partitioned into

independent events P (Am ∩ Bj) = P (Am)P (Bj) = pmqj , j = 1, ..., n − m + 1 so that
pm = pmq1 + ...+pmqn−m+1 then the entropy Hn(·) becomes a weighted sum. Naturally,
the result will be a logarithmic function for the measure of entropy.

There are several modifications to this crucial recursivity postulate. One suggested
by Tverberg is that n − m + 1 = 2 and q1 = q, q2 = 1 − q, 0 < q < 1 and H2(q, 1 −
q) is assumed to be Lebesgue integrable in 0 ≤ q ≤ 1. Again a characterization of
Shannon entropy is obtained. In all the characterization theorems for Shannon entropy
this recursivity property enters in one form or the other as a postulate, which in effect
implies a logarithmic form for the entropy measure. Shannon entropy Sk has the following
form:

Sk = −A

k∑

i=1

pi ln pi, pi > 0, i = 1, ..., k, p1 + ... + pk = 1, (3)

where A is a constant. If any pi is assumed to be zero then 0 ln 0 is to be interpreted as
zero. Since the constant A is present, logarithm can be taken to any base. Usually the
logarithm is taken to the base 2 for ready application to binary systems. We will take
logarithm to the base e.

1.3 Generalization of Shannon entropy

Consider again a multinomial population P = (p1, ..., pk), pi > 0, i = 1, ..., k, p1+...+pk =
1. The following are some of the generalizations of Shannon entropy Sk.

Rk,α(P ) =
ln(

∑k
i=1 pα

i )
1− α

, α 6= 1, α > 0, (4)

(Rényi entropy of order α of 1961)

Hk,α(P ) =
∑k

i=1 pα
i − 1

21−α − 1
, α 6= 1, α > 0 (5)

(Havrda-Charvát entropy of order α of 1967)

Tk,α(P ) =
∑k

i=1 pα
i − 1

1− α
, α 6= 1, α > 0 (6)

(Tsallis entropy of 1988)

Mk,α(P ) =
∑k

i=1 p2−α
i − 1

α− 1
, α 6= 1, −∞ < α < 2 (7)

(entropic form of order α)
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M∗
k,α(P ) =

ln(
∑k

i=1 p2−α
i )

α− 1
, α 6= 1, −∞ < α < 2, (8)

(additive entropic form of order α).

When α → 1 all the entropies of order α described above in (4) to (7) go to Shannon
entropy Sk.

lim
α→1

Rk,α(P ) = lim
α→1

Hk,α(P ) = lim
α→1

Tk,α(P ) = lim
α→1

Mk,α(P ) = lim
α→1

M∗
k,α(P ) = Sk. (9)

Hence all the above measures are called generalized entropies of order α.

Let us examine to see what happens to the above entropies in the case of a joint
distribution. Let pij > 0, i = 1, ...,m, j = 1, ..., n such that

∑m
i=1

∑n
j=1 pij = 1. This is a

bivariate situation of a discrete distribution. Then the entropy in the joint distribution,
for example,

Mm,n,α(P,Q) =

∑m
i=1

∑n
j=1 p2−α

ij − 1
α− 1

. (10)

If the PPP holds and if pij = piqj , p1 + ...+ pm = 1, q1 + ...+ qn = 1, pi > 0, i = 1, ..., m,
qj > 0, j = 1, ..., n and if P = (p1, ..., pm), Q = (q1, ..., qn) then

(α− 1)Mm,α (P ) Mn,α(Q) =
1

α− 1

(
m∑

i=1

p2−α
i − 1

) 


n∑

j=1

q2−α
j − 1




=
1

α− 1




m∑

i=1

n∑

j=1

p2−α
i q2−α

j −
m∑

i=1

p2−α
i −

n∑

j=1

q2−α
j + 1




= Mm,n,α(P, Q)−Mm,α(P )−Mn,α(Q).

Therefore

Mm,n,α(P, Q) = Mm,α(P ) + Mn,α(Q) + (α− 1)Mm,α(P )Mn,α(Q). (11)

If any one of the above mentioned generalized entropies in (4) to (8) is written as
Fm,n,α(P, Q) then we have the relation

Fm,n,α(P, Q) = Fm,α(P ) + Fn,α(Q) + a(α)Fm,α(P )Fn,α(Q). (12)

where

a(α) = 0 (Rényi entropy Rk,α(P ))
= 21−α − 1 (Havrda-Charvát entropy Hk,α(P ))
= 1− α (Tsallis entropy Tk,α(P ))
= α− 1 (entropic form of order α, i.e., Mk,α(P ))
= 0 (additive entropic form of order α, i.e., M∗

k,α(P )). (13)

When a(α) = 0 the entropy is called additive and when a(α) 6= 0 the entropy is called
non-additive. As can be expected, when a logarithmic function is involved, as in the cases
of Sk(P ), Rk,α(P ),M∗

k,α(P ), the entropy is additive and a(α) = 0.
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1.4 Extensions to higher dimensional joint distributions

Consider a trivariate population or a trivariate discrete distribution pijk > 0, i =
1, ...,m, j = 1, ..., n, k = 1, ..., r such that

∑m
i=1

∑n
j=1

∑r
k=1 pijk = 1. If the PPP holds

mutually, that is, pair-wise as well as jointly, which then will imply that

pijk = piqjsk,

m∑

i=1

pi = 1,

n∑

j=1

qj = 1,

r∑

k=1

sk = 1,

P = (p1, ..., pm), Q = (q1, ..., qn), S = (s1, ..., sr).

Then proceeding as before, we have for any of the measures described above in (4) to (8),
calling it F (·),

Fm,n,r,α(P,Q, S) = Fm,α(P ) + Fn,α(Q) + Fr,α(S) + a(α)[Fm,α(P )Fn,α(Q)
+Fm,α(P )Fr,α(S) + Fn,α(Q)Fr,α(S)]
+[a(α)]2Fm,α(P )Fn,α(Q)Fr,α(S) (14)

where a(α) is the same as in (13). The same procedure can be extended to any multi-
variable situation. If a(α) = 0 we may call the entropy additive and if a(α) 6= 0 then the
entropy is non-additive.

1.5 Crucial recursivity postulate

Consider the multinomial population P = (p1, ..., pk), pi > 0, i = 1, ..., k, p1+...+pk = 1.
Let the entropy measure to be determined through appropriate postulates be denoted by
Hk(P ) = Hk(p1, ..., pk). For k = 2 let

f(x) = H2(x, 1− x), 0 ≤ x ≤ 1 or x ∈ [0, 1]. (15)

If another parameter α is to be involved in H2(x, 1−x) then we will denote f(x) by fα(x).
From (5) to (7) it can be seen that the generalized entropies of order α of Havrda-Charvát
(1967), Tsallis (1988, 2004) and Shannon (1948) entropy satisfy the functional equation

fα(x) + bα(x)fα

(
y

1− x

)
= fα(y) + bα(x)f

(
x

1− y

)
(16)

for x, y ∈ [0, ) with x + y ∈ [0, 1], with the boundary condition

fα(0) = fα(1) (17)

where

bα(x) = 1− x (Shannon entropy Sk(P ))
= (1− x)α (Harvda-Charvát entropy Hk,α(P ))
= (1− x)α (Tsallis entropy Tk,α(P ))
= (1− x)2−α (entropic form of order α, i.e., Mk,α(P )). (18)
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Observe that the normalizing constant at x = 1
2 is equal to 1 for Hk,α(P ) and it is

different for other entropies. Thus equations (6),(7),(8), with the appropriate normalizing
constants fα( 1

2 ), can give characterization theorems for the various entropy measures.
The form of bα(x) is coming from the crucial recursivity postulate, assumed as a desirable
property for the measures.

1.6 Continuous analogues

In the continuous case let f(x) be the density function of a real random variable x. Then
the various entropy measures, corresponding to the ones in (4) to (8) are the following:

Rα(f) =
1

1− α
ln

[∫ ∞

−∞
[f(x)]αdx

]
, α 6= 1, α > 0 (19)

(Rényi entropy of order α)

Hα(f) =
1

21−α − 1

[∫ ∞

−∞
[f(x)]αdx− 1

]
, α 6= 1, α > 0 (20)

(Havrda-Charvát entropy of order α)

Tα(f) =
1

1− α

[∫ ∞

−∞
[f(x)]αdx− 1

]
, α 6= 1, α > 0, (21)

(Tsallis entropy of order α)

Mα(f) =
1

α− 1

[∫ ∞

−∞
[f(x)]2−αdx− 1

]
, α 6= 1, α < 2 (22)

(entropic form of order α)

M∗
α(f) =

1
α− 1

ln
[∫ ∞

−∞
[f(x)]2−αdx

]
, α 6= 1, α < 2 (23)

(additive entropic form of order α).

As expected, Shannon entropy in this case is given by

S(f) = −A

∫ ∞

−∞
f(x) ln f(x)dx (24)

where A is a constant.

Note that when PPP (product probability property) or statistical independence holds
then in the continuous case also we have the property in (12) and (14) and then non-
additivity holds for the measures analogous to the ones in (3),(5),(6),(7) with a(α) re-
maining the same. Since the steps are parallel a separate derivation is not given here.
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2. Maximum entropy principle: distributional pathway

If we have a multinomial population P = (p1, ..., pk), pi > 0, i = 1, ..., k, p1 + ... + pk = 1
or the scheme P (Ai) = pi, A1 ∪ ... ∪ Ak = S, P (S) = 1, Ai ∩ Aj = φ, i 6= j then we
know that the maximum uncertainty in the scheme or the minimum information from
the scheme is obtained when we cannot give any preference to the occurrence of any
particular event or when the events are equally likely or when p1 = p2 = ... = pk = 1

k . In
this case, Shannon entropy becomes,

Sk(P ) = Sk(
1
k

, ...,
1
k

) = −A

k∑

i=1

1
k

ln
1
k

= A ln k (25)

and this is the maximum uncertainty or maximum Shannon entropy in this scheme. If
the arbitrary functional f is to be fixed by maximizing the entropy then in (19) to (21) we
have to optimize

∫∞
−∞[f(x)]αdx for fixed α, over all functional f , subject to the condition∫∞

−∞ f(x)dx = 1 and f(x) ≥ 0 for all x. For applying calculus of variation procedure we
consider the functional

U = [f(x)]α − λ[f(x)]

where λ is a Lagrangian multiplier. Then the Euler equation is the following:

∂U

∂f
= 0 ⇒ αfα−1 − λ = 0 ⇒ f =

(
λ

α

) 1
α−1

= constant. (26)

Hence f is the uniform density in this case, analogous to the equally likely situation in
the multinomial case. If the first moment E(x) =

∫∞
−∞ xf(x)dx is assumed to be a given

quantity for all functional f then U will become the following for (19) to (21).

U = [f(x)]α − λ1[f(x)]− λ2xf(x)

and the Euler equation leads to the power law. That is,

∂U

∂f
= 0 ⇒ αfα−1 − λ1 − λ2x = 0 ⇒ f = c1

[
1 +

λ2

λ1
x

] 1
α−1

. (27)

By selecting c1, λ1, λ2 appropriately we can create a density out of (27). For α > 1 and
λ2
λ1

> 0 the right side in (27) increases exponentially. If α = q > 1 and λ2
λ1

= q − 1
then we have Tsallis’ q-exponential function from the right side of (27). If α > 1 and
λ2
λ1

= −(α − 1) then (27) can produce a density in the category of a type-1 beta. From
(27) it is seen that the form of the entropies of Havrda-Charvát Hk,α(P ) and Tsallis
Tk,α(P ) need special attention to produce densities (Ferri et al. 2005). However, Tsallis
has considered a different constraint on E(x). If the density f(x) is replaced by its escort
density, namely, µ[f(x)]α where µ−1 =

∫
x
[f(x)]αdx and if the expected value of x in this

escort density is assumed to be fixed for all functional f then the U of (26) becomes

U = fα − λ1f + µλ2xfα and
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∂U

∂f
= 0 ⇒ αfα−1[1 + µλ2x] = λ1 ⇒ f =

λ∗

(1 + λ3x)
1

α−1
⇒

f = λ∗1[1 + λ3x]−
1

α−1

where λ3 is a constant and λ∗1 is the normalizing constant. If λ3 is taken as λ3 = α − 1
then

f = λ∗1[1 + (α− 1)x]−
1

α−1 . (28)

Then (28) for α > 1 is Tsallis statistics (Tsallis 2004; Cohen 2005). Then for α < 1 also
by writing α− 1 = −(1− α) one gets the case of Tsallis statistics for α < 1 (Ferri et al.
2005). These modifications and the consideration of escort distribution are not necessary
if we take the generalized entropy of order α. Thus if we consider Mα(f) and if we assume
that the first moment in f(x) itself is fixed for all functional f then the Euler equation
gives

(2− α)f1−α − λ1 + λ2x = 0 ⇒ f = λ̄

[
1− λ2

λ1
x

] 1
1−α

and for λ2
λ1

= 1− α we have Tsallis statistics (Tsallis 2004, Cohen 2005)

f = λ̄[1− (1− α)x]
1

1−α (29)

coming directly, where λ̄ is the normalizing constant.

Let us start with Mα(f) of (20) under the assumptions that f(x) ≥ 0 for all x,∫ b

a
f(x)dx = 1,

∫ b

a
xδf(x)dx is fixed for all functional f and for a specified δ > 0, f(a) is

the same for all functional f , f(b) is the same for all functional f , for some limits a and
b, then the Euler equation becomes

(2− α)f1−α − λ1 − λ2x
δ = 0 ⇒ f = c1[1 + c∗1x

δ]
1

1−α . (30)

If c∗1 is written as −s(1− α), s > 0 then we have, writing f1 for f ,

f1 = c1[1− s(1− α)xδ]
1

1−α , δ > 0, α < 1, 0 ≤ x ≤ 1
[s(1− α)]

1
δ

(31)

where 1 − s(1 − α)xδ > 0. For α < 1 or −∞ < α < 1 the right side of (31) remains
as a generalized type-1 beta model with the corresponding normalizing constant c1. For
α > 1, writing 1−α = −(α−1) the model in (31) goes to a generalized type-2 beta form,
namely,

f2 = c2[1 + s(α− 1)xδ]−
1

α−1 . (32)

When α → 1 in (31) or in (32) we have an extended or stretched exponential form,

f3 = c3e−s xδ

. (33)

If c∗1 in (30) is taken as positive then (30) for α < 1, α > 1, α → 1 will be increasing
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exponentially. Hence all possible forms are available from (30). The model in (31) is a
special case of the distributional pathway model and for a discussion of the matrix-variate
pathway model see Mathai (2005). Special cases of (31) and (32) for δ = 1 are Tsallis
statistics (Gell-Mann & Tsallis 2004; Ferri et al. 2005).

Instead of optimizing Mα(f) of (22) under the conditions that f(x) ≥ 0 for all x,∫ b

a
f(x)dx = 1 and

∫ b

a
xδf(x)dx is fixed, let us optimize under the following conditions:

f(x) ≥ 0 for all x,
∫ b

a
f(x)dx < ∞ and the following two moment-like expressions are

fixed quantities for all functional f ,
∫ b

a

x(γ−1)(1−α)f(x)dx = fixed ,

∫ b

a

x(γ−1)(1−α)+δf(x)dx = fixed.

Then the Euler equation becomes

(2− α)f1−α − λ1x
(γ−1)(1−α) − λ2x

(γ−1)(1−α)+δ = 0 ⇒
f = c xγ−1[1 + c∗xδ]

1
1−α

and for c∗ = −s(1 − α), s > 0, we have the distributional pathway model for the real
scalar case, namely

f(x) = c xγ−1[1− s(1− α)xδ]
1

1−α , δ > 0, s > 0 (34)

where c is the normalizing constant. For α < 1, (34) gives a generalized type-1 beta form,
for α > 1 it gives a generalized type-2 beta form and for α → 1 we have a generalized
gamma form. For α > 1, (34) gives the superstatistics of Beck (2006) and Beck &
Cohen (2003). For γ = 1, δ = 1, (34) gives Tsallis statistics (Tsallis 2004; Cohen 2005).
Densities appearing in a number of physical problems are seen to be special cases of (34),
a discussion of which may be seen from Mathai & Haubold (2006a). For example, (34)
for δ = 2, γ = 3, α → 1, x > 0 is the Maxwell-Boltzmann density; for δ = 2, γ = 1, α →
1,−∞ < x < ∞ is the Gaussian density; for γ = δ, α → 1 is the Weibull density. For
γ = 1, δ = 2, 1 < q < 3 we have the Wigner function W (p) giving the atomic moment
distribution in the framework of Fokker-Planck equation, see Douglas, Bergamini, and
Renzoni (2006) where

W (p) = z−1
q [1− β(1− q)p2]

1
1−q , 1 < q < 3. (35)

Before closing this section we may observe one more property for Mα(f). As an expected
value

Mα(f) =
1

α− 1
[
E[f(x)]1−α − 1

]
. (36)

But Kerridge’s (Kerridge 1961) measure of “inaccuracy” in assigning q(x) for the true
density f(x), in the generalized form is

Hα(f : q) =
1

(21−α − 1)
[
E[q(x)]α−1 − 1

]
, (37)



On entropic, distributional, and differential pathways 679

which is also connected to the measure of directed divergence between q(x) and f(x). In
(37) the normalizing constant is 21−α − 1, the same factor appearing in Havrda-Charvt́
entropy. With different normalizing constants, as seen before, (36) and (37) have the
same forms as an expected value with q(x) replaced by f(x) in (36). Hence Mα(f) can
also be looked upon as a type of directed divergence or “inaccuracy” measure.

3. Associated differential pathway

The functional part in (34), for a more general exponent, namely

g(x) =
f(x)

c
= xγ−1[1− s(1− α)xδ]

β
1−α , α 6= 1, δ > 0, β > 0, s > 0 (38)

is seen to satisfy the following differential equation for γ 6= 1 which defines the differential
pathway.

x
d
dx

g(x) = (γ − 1)xγ−1[1− s(1− α)xδ]
β

1−α

−sβδxδ+γ−1[1− s(1− α)xδ]
β

1−α [1− (1−α)
β ]. (39)

Then for δ = (γ−1)(α−1)
β , γ 6= 1, α > 1 we have

x
d
dx

g(x) = (γ − 1)g(x)− sβδ[g(x)]1−
(1−α)

β (40)

= (γ − 1)g(x)− sδ[g(x)]α (41)
for β = 1, γ 6= 1, δ = (γ − 1)(α− 1), α > 1.

For γ = 1, δ = 1 in (38) we have

d
dx

g(x) = −s[g(x)]η, η = 1− (1− α)
β

(42)

= −s[g(x)]α for β = 1. (43)

Here (39) is the differential equation for the diverse distribution functions generated
through the entropic pathway (Souza & Tsallis 2005) and (43) is the power law coming
from Tsallis statistics (Gell-Mann & Tsallis 2004).

Remark. The referee initiated the attention of the authors to the Editorial for the
proceedings of the NEXT2003 conference on news and expectations in thermostatistics by
G. Kaniadakis and M. Lissia, available at arXiv:cond-mat/0409615v1. The authors join
the spirit of Kaniadakis and Lissia that parameter interpretation in information theory
and mathematical statistics is less important and that Boltzmann-Gibbs-Shannon entropy
has been generalized in different ways by adding one or even two parameters. This paper
provides the mathematical and statistical methods to unify the generalizations of such
entropies in the case of one parameter through the entropic and distributional pathways.
It also supplements the more diversified distribution functions with a differential pathway.
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