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Periodic orbits around the collinear liberation points
in the restricted three body problem when the smaller
primary is a triaxial rigid body : Sun-Earth case
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Abstract. Periodic orbits belonging to the Strömgren families A, B and
C around the collinear liberation points in the restricted three body problem
have been studied when the smaller primary is a triaxial rigid body by taking
different values of semiaxes of the triaxial rigid body. The Liapunov stability
of each periodic solution has also been examined.
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1. Introduction

In the effort to understand the structure of the solutions of a non-integral dynamical
system, numerical determination of its periodic solutions and their stability properties
play a role of fundamental importance. The determination of the periodic solutions can
of course be achieved by numerical integration of the equations of motion.

The infinitesimal periodic oscillations around the collinear Lagrangian points L1,
L2, L3 in the restricted three – body problem are continued to finite periodic orbits
in the plane of motion of the two primaries as well as in three dimensions, Moulton
(1920). In the planar case these finite orbits are grouped into the families A, B and C
respectively and have been studied numerically by many investigators e.g., Strömgren
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(1935); Bartlett (1964); Henon(1965) for µ = 0.5; and Markellos (1975) for µ = 0.00095;
Ragos and Zagouras (1991); Elipe and Lara (1997); Corbera and Llibre (2003); Henon
(2003); Henrard and Navarro (2004). Concerning the three-dimensional case, Moulton
(1920) has shown that there are three types of finite periodic solutions which are generated
from the infinitesimal ones. Bray and Goudas (1967) have computed numerically for
µ = 0.4 the three families A,B and C. Ragos and Zagouras (1991) draw the periodic
solutions around the collinear Lagrangian points in the photo-gravitational restricted
three body problem: Sun-Jupiter case. Elipe and Lara (1997) studied the periodic orbits
in the restricted three-body problem with radiation pressure. Corbera and Llibre (2003)
studied the periodic orbits of a collinear restricted three-body problem. New families of
periodic orbits in Hill’s problem of three-bodies were found by Henon (2003). Henrard
and Navarro (2004) have shown the families of periodic orbits emanating from homoclinic
orbits in the restricted problem of three bodies.

In nature, the celestial bodies are not perfect spheres. They are either oblate or
triaxial. So far, very little work is done by taking the primaries as triaxial bodies.

In this paper, we have studied the effect of oblateness of the smaller primary on the
periodic orbits in the restricted three body problem when smaller primary is a triaxial
rigid body and more massive body is a point mass with its equatorial plane coincident
with the plane of motion in sun-earth–satellite system.

We have drawn the exact periodic orbits in the Strömgren families A, B and C. Here
we have used the predictor-corrector method for the numerical determination of periodic
solutions around the collinear liberation points.

2. Equation of motion and variation

In the usual barycentric, rotating and dimensionless coordinate system (X, Y ), with the
two main bodies having masses m1 and m2, the equations of motion of the third particle
m3 in the phase space (X1, X2, X3, X4) are

Ẋi = fi(X1, . . . , X4), i = 1 . . . 4, (1)

with

f1 = X3, f2 = X4

f3 = 2nX4 + n2X1 − (1− µ)(X1 − µ)
r3
1

− µ(X1 + 1− µ)
r3
2

− 3µ(2σ1 − σ2)(X1 + 1− µ)
2r5

2

+
15µ(σ1 − σ2)(X1 + 1− µ)X2

2

2r7
2

,

f4 = −2nX3 + n2X2 − (1− µ)X2

r3
1

− µX2

r3
2

− 3µ(2σ1 − σ2)X2

2r5
2

− 3µ(σ1 − σ2)X2

2r5
2
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+
15µ(σ1 − σ2)X3

2

2r7
2

, (2)

where

X1 = X, X2 = Y, X3 = Ẋ, X4 = Ẏ ,

r2
1 = (X1 − µ)2 + X2

2 , r2
2 = (X1 + 1− µ)2 + X2

2 ,

µ =
m2

m1 + m2
≤ 1

2
,

m1,m2(m1 ≥ m2) being the masses of the primaries,

σ1 =
a2
1 − a2

3

5R2
, σ2 =

a2
2 − a2

3

5R2
, σ1, σ2 ¿ 1,

where a1, a2 and a3 are the semi-axes of the earth and R is the dimensional distance
between the earth and the sun. Here, we have taken only the first order terms of σ1, σ2.
The mean motion n of the primaries is given by

n = 1 +
3
4
(2σ1 − σ2).

The coordinates of the infinitesimal particle in phase space X1, . . . , X4 depend uniquely,
along any solution, with the initial conditions (X01, . . . , X04) and the time t i.e.

Xi = Xi(X01, . . . , X04, t), i = 1 . . . 4.

Their partial derivatives with respect to the initial conditions satisfying the equations of
variation are

d

dt

(
∂Xi

∂Xoj

)
=

4∑

k=1

∂fi

∂Xk
· ∂Xk

∂Xoj
, i, j = 1 . . . 4. (3)

If we denote the variations ∂Xi

∂Xoj
by vij , we can write these equations more explicitly as

follows

v̇ij = v(i+2)/j , i = 1, 2, j = 1, 2, 3, 4,

v̇ij = fi1v1j + fi2v2j + fi3v3j + fi4v4j , i = 3, 4, j = 1, 2, 3, 4,

where
fij =

∂fi

∂Xoj
.

The stability parameters a, b, c and d as used by Markellos (1975) are:

a = v11 + sv14, b = v13,

c = v31 − 2(1 + s)v21 − s2v24,

d = v33 − (2 + s)v23, s = sc + sσ,
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where

sc =
−1
X04

[
n2X01 − (1− µ)

|X01 − µ|(X01 − µ)
− µ

|X01 − µ + 1|(X01 − µ + 1)

]
,

sσ =
1

X04

[
3µ(2σ1 − σ2)

2|X01 − µ + 1|(X01 − µ + 1)3

]
.

3. Motion around the collinear equilibrium points

We have calculated the collinear equilibrium points in different cases by assuming the
different values of the semiaxes of smaller primary. (Table 1)

We know for collinear equilibrium points,

f3 − 2nX4 = 0, X2 = 0,

i.e.

n2X1 − (1− µ)(X1 − µ)
|X1 − µ|3 − µ(X1 + 1− µ)

|X1 + 1− µ|3 − 3µ(2σ1 − σ2)(X1 + 1− µ)
2|X1 + 1− µ|5 = 0.

The characteristic roots are

λi = ±
(

λc1√
2

+ λσ1

)
, i = 1, 2

λi = ±
(

λc2√
2
− λσ2

)
, i = 3, 4

λc1 = [R− 2 + (9R2 − 8R)1/2]1/2,

λc2 = [R− 2− (9R2 − 8R)1/2]1/2,

λσ1 =
q1 − q2 − 6(2σ1 − σ2)

2
√

2λc1

+
6(2−R)(2σ1 − σ2)

2
√

2(9R2 − 8R)1/2λc1

+
q2(4 + 3R)− q1(4− 3R)
2
√

2(9R2 − 8R)1/2λc1

,

λσ2 =
q1 − q2 − 6(2σ1 − σ2)

2
√

2λc2

+
6(2−R)(2σ1 − σ2)

2
√

2(9R2 − 8R)1/2λc2

+
q2(4 + 3R)− q1(4− 3R)
2
√

2(9R2 − 8R)1/2λc2

,

and their corresponding angular frequencies are

ωci = −λci√
2
, ωσi = −λσi, i = 1, 2

where

R =
(1− µ)

|XLj − µ|3 +
µ

|XLj + 1− µ|3 ,

q1 =
3
2
(2σ1 − σ2) +

6µ(2σ1 − σ2)
|XLj + 1− µ|5 ,

q2 =
−3
2

(2σ1 − σ2) +
3µ(2σ1 − σ2)

2|XLj + 1− µ|5 +
3µ(σ1 − σ2)
|XLj + 1− µ|5 .
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XLj is the X- coordinate of the collinear libration points Lj , j = 1, 2, 3.

4. Second order approximation of periodic solution

Let L be any collinear equilibrium points Lj , j = 1, 2, 3. If a new coordinate system
is defined with L as origin and LX1, LX2, as axes, parallel to OX and OY as defined
by Szebehely (1967) respectively, the proper transformation between the two systems is
given by the relations

X1 = XL + x1, X2 = x2. (4)

The eqns. (2) are transformed through eqs. (4) in the (x1, x2) coordinate system and the
equations obtained are expanded by Taylor series up to the second order terms to obtain

ẍ1 − 2nẋ2 = (A1 + A′1)x1 + (A2 + A′2)x
2
1 + (A3 + A′3)x

2
2,

ẍ2 − 2nẋ1 = (B1 + B′
1)x2 + (B2 + B′

2)x1x2, (5)

where

A1 = (1 + 2R), A′1 = 3(2σ1 − σ2)
[
1
2

+
3µ

|XLj + 1− µ|5
]

,

A2 = −3
[
(1− µ)(XLj − µ)

|XLj − µ|5 +
µ(XLj + 1− µ)
|XLj + 1− µ|5

]
,

A′2 =
−15µ(2σ1 − σ2)(XLj + 1− µ)

|XLj − µ + 1|7 ,

A3 = −A2

2
, A′3 =

A′2
4
− 15µ(σ1 − σ2)(XLj + 1− µ)

2|XLj + 1− µ|7 ,

B1 = (1−R), B′
1 =

3
2
(2σ1 − σ2)

[
1− µ

|XLj − µ + 1|5
]
− 3µ(σ1 − σ2)
|XLj + 1− µ|5 ,

B2 = −A2, B′
2 = −A′2 +

15µ(σ1 − σ2)(XLj + 1− µ)
|XLj − µ + 1|7 .

We search for periodic solutions in the form of second order expansions in powers of
parameter ε

x1(τ) = x11(τ)ε + x12(τ)ε2,

x2(τ) = x21(τ)ε + x22(τ)ε2, (6)

where time is expanded by the expression

t = (1 + t1ε + t2ε
2)τ.

In order to erase any secular term in further analysis, we substitute the relations (6)
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into (5). Retaining terms of powers in ε not greater than two and denoting by dot (·) the
τ - derivatives and ignoring the terms σiε

2, i = 1, 2, we get

(ẍ11ε + ẍ12ε
2)− 2n(ẋ21ε + ẋ22ε

2) = (A1 + A′1)(x11ε + x12ε
2)

+(A2 + A′2)(x11ε + x12ε
2)2

+(A3 + A′3)(x21ε + x22ε
2)2,

(ẍ21ε + ẍ22ε
2) + 2n(ẋ11ε + ẋ12ε

2) = (B1 + B′
1)(x21ε + x22ε

2)
+(B2 + B′

2)(x11ε + x12ε
2)(x21ε + x22ε

2). (7)

4.1 The first order system

Defining the differential operator and taking terms up to the first order in ε in eqs. (7),
we have

F1(D) =
(

D2 − (A1 + A′1) −2nD
2nD D2 − (B1 + B′

1)

)

and

F1D

(
x11

x21

)
=

(
0
0

)
. (8)

The general solution of the eqs. (8) is

x11(τ) =
4∑

i=1

ciExp(λiτ), x21(τ) =
4∑

i=1

diExp(λiτ) (9)

where λi, i = 1, 2, 3, 4 are the characteristic roots of the system (8). By a suitable choice
of the coefficients of the exponential terms of eq. (9), we may have a special periodic
solution, which contains only the frequency corresponding to a specific imaginary part.
We denote this frequency by ω. The eqs. (8) admit the periodic solution.

x11(τ) = A cos(ωτ) + B sin(ωτ),
x21(τ) = A∗ cos(ωτ) + B∗ sin(ωτ),

where the coefficients A,B, A∗, B∗ are connected by the relations

A = Ac + Aσ,

A∗ =
2nωB

B1 + B′
1 + ω2

, B∗ = B∗
c + B∗

σ,

where

B∗
C = − 2Ac

B1 + ω2
c

ωc,

B∗
σ = − 2Ac

B1 + ω2
c

[
ωσ − ωc(B′

1 + 2ωcωσ)
B1 + ω2

c

+
3
4
(2σ1 − σ2)ωc

]
− 2Aσωc

B1 + ω2
c

,
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Ac =
1

A2

[
−A1 − ω2

c +
4ω2

c

B1 + ω2
c

]
,

Aσ =
1

A2

[
−A′1 − 2ωcωσ +

4
B1 + ω2

c

{
2ωcωσ +

3
2
(2σ1 − σ2)ω2

c −
ω2

c (B′
1 + 2ωcωσ)

B1 + ω2
c

}]

+
A′2
A2

2

(
A1 + ω2

c −
4ω2

c

B1 + ω2
c

)
.

Without any loss of generality, we put x21(0) = 0. Then A∗ = 0 and consequently B = 0.
This means that ẋ11(0) = 0. Finally, the above solution becomes

x11(τ) = A cos(ωτ),
x21(τ) = B∗ sin(ωτ). (10)

4.2 The second order system

Defining the deferential operator and taking terms of the second order in ε in eqs. (7),
we have

F2(D) =
(

D2 −A1 −2nD
2nD D2 −B1

)

and

F2(D)
(

x12

x22

)
=

(
g1(τ)
g2(τ)

)
(11)

where
g1(τ) = A2x

2
11 + A3x

2
21, g2(τ) = B2x11x21.

Substituting eqs. (10) into eqs.(11), functions gi, i = 1, 2 become

g1(τ) = K0 + K1 cos(2ωτ), g2(τ) = Λ1 sin(2ωτ).

where

K0 =
1
2
[A2A

2
c + A3B

∗2
c ],

K1 =
1
2
[A2A

2
c −A3B

∗2
c ],

Λ1 =
1
2
[B2AcB

∗
c ].

A periodic solution of system (11) is

x12(τ) = M0 + M1 cos(2ωτ),
x22(τ) = N1 sin(2ωτ). (12)
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where

M0 = −K0

A1
, M1 =

1
ψ

[−4K1ω
2
c + 4Λ1ωc −B1K1],

N1 =
1
ψ

[−4Λ1ω
2
c + 4K1ωc −A1Λ1],

ψ = 16ω4
c − 4[4−A1 −B1]ω2

c + A1B1.

Finally, a second order approximation of the periodic solution around the collinear equi-
librium points, as a function of parameter ε, is obtained from eqs. (10) and (12) as

x1(τ, ε) = [A cos(ωτ)]ε + [M0 + M1 cos(2ωτ)]ε2,

x2(τ, ε) = [B∗ sin(ωτ)]ε + [N1 sin(2ωτ)]ε2. (13)

The period of this solution is

T =
2π

ω
, ω ∈ [ωc, ωσ].

5. Numerical results µ = 0.000003, ε = 10−3

For comparing the effect of triaxial rigid body on the periodic orbits around the collinear
liberation points, we take five different cases of different sets of semi axes in km. (a1, a2, a3)
of the smaller primary i.e. (6400, 6400, 6400), (6400, 6390, 6380), (6400, 6380, 6360),
(6400, 6370, 6340). Now we calculate the three collinear liberation points in all the above
cases by using the method given by Szebehely (1997). We computed the initial conditions
(Xo, Ẏo, T ) at τ = 0 by using the eqn. (13) and (4) in all the above cases. Then by using
the linear predictor-corrector algorithm based on numerical integration of the equations
of motion (1) and first order variations (3), we correct the initial conditions (Xo, Ẏo, T )
in all the above cases. We repeat the process up to the exact periodic orbit. At that
point we note down (Xo, Ẏo, T ) and draw the periodic orbits in all the five cases. At that
point we further calculate the stability parameters a, b, c and d for each periodic orbit.
For liapanov stability, the periodic orbit is stable if |a| < 1 Markellos (1975).

The results for each family are represented in tabular and graphical form. The results
of the families A, B, and C are given in Tables 2, 3 and 4 respectively. The results are
graphically shown in Figs 1, 2 and 3.

In Table 2, the first column represents parameters (Xo, Ẏo) initial condition for the
periodic orbit around L2, T is the period and a, b, c, and d represent stability parameters.
The second, third, fourth, fifth and sixth columns give corresponding values of the pa-
rameters mentioned above. Columns in Tables 3 and 4 are defined in a similar way as
Table 2.

With the initial conditions mentioned in Tables 2, 3, and 4, we have drawn periodic
orbits around L2 (Fig. 1), L3 (Fig.2) and L1 (Fig.3).
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Ẏ
o

−
7
.7

1
4
0
7
7
0
0
6
3
2
1
7
7
×

1
0
−

9
−

7
.9

8
7
9
0
3
3
4
8
4
9
2
4
8
6
×

1
0
−

9
−

8
.2

1
6
0
6
9
8
5
6
6
8
7
1
6
9
×

1
0
−

9
−

8
.4

2
4
1
1
4
9
6
2
6
0
1
0
5
4
×

1
0
−

9
−

9
.2

0
7
3
7
9
5
1
3
2
4
7
3
4
5
×

1
0
−

9

T
3
.0

1
1
1
6
2
6
8
4
7
1
5
1
3
2

3
.0

1
1
5
1
5
1
3
2
1
7
2
5
8

3
.0

1
1
4
4
0
3
2
1
8
8
2
9
1
5

3
.0

1
1
1
0
5
9
0
0
1
4
3
0
3
9

3
.0

1
1
3
3
2
6
5
7
1
3
4
6
3
4

a
−

5
.0

3
2
8
6
2
9
7
2
2
0
8
8
1
×

1
0
1
0

−
4
.8

6
4
6
8
0
8
9
4
1
7
2
2
3
7
×

1
0
1
0

−
4
.7

2
8
6
8
8
7
7
2
7
6
9
9
4
5
×

1
0
1
0

−
4
.6

0
7
9
9
9
7
5
2
7
8
6
6
5
4
×

1
0
1
0

−
4
.2

1
8
4
2
5
4
8
1
2
4
1
1
3
6
7
×

1
0
1
0

b
3
.5

6
2
5
9
9
7
7
6
0
5
2
5
×

1
0
2

3
.5

6
5
7
8
2
1
5
8
7
9
5
8
3
9
×

1
0
2

3
.5

6
5
1
0
7
1
4
3
1
7
2
1
6
3
×

1
0
2

3
.5

6
2
0
8
9
1
7
1
6
7
8
0
6
8
×

1
0
2

3
.5

6
4
1
3
6
2
5
3
2
2
9
8
9
7
×

1
0
2

c
7
.1

2
3
8
0
6
8
5
3
2
5
8
4
3
×

1
0
1
8

6
.6

4
9
6
7
2
8
7
1
4
0
3
5
1
1
×

1
0
1
8

6
.2

8
4
2
8
3
9
2
0
4
8
7
3
7
3
×

1
0
1
8

5
.9

7
2
6
8
3
2
4
2
9
9
4
7
8
5
×

1
0
1
8

5
.0

0
2
5
8
1
5
4
1
1
8
2
5
8
6
×

1
0
1
8

d
−

5
.0

3
2
8
6
2
9
7
3
3
8
5
8
2
×

1
0
1
0

−
4
.8

6
4
6
8
0
8
9
1
9
2
5
7
5
1
×

1
0
1
0

−
4
.7

2
8
6
8
8
7
7
3
0
0
6
6
2
7
×

1
0
1
0

−
4
.6

0
7
9
9
9
7
5
4
1
5
7
6
2
6
×

1
0
1
0

−
4
.2

1
8
4
2
5
4
8
1
8
4
4
2
1
6
×

1
0
1
0



220 Sanjay Jain et al.

Figure 1. Periodic orbits around L2: Family A.

Figure 2. Periodic orbits around L3: Family B.
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Ẏ
o

−
2
.5

1
2
9
3
3
8
4
4
8
3
1
2
3
×

1
0
−

1
1

−
3
.4

4
3
4
8
1
7
0
1
6
1
9
7
1
9
×

1
0
−

1
1

−
4
.4

1
7
4
6
2
7
5
2
6
8
9
4
2
7
×

1
0
−

1
1

−
6
.5

3
3
9
9
1
6
1
2
1
3
0
9
4
×

1
0
−

1
1

−
7
.4

5
5
4
4
4
3
3
8
8
7
2
2
9
0
×

1
0
−

1
1

T
6
.2

8
3
1
6
8
8
1
3
9
4
7

6
.2

8
3
1
6
8
8
1
3
9
1
4
7
7

6
.2

8
3
1
6
8
8
1
3
8
8
2
5
4

6
.2

8
3
1
6
8
8
1
3
8
5
0
3
1

6
.2

8
3
1
6
8
8
1
3
8
1
8
2
7

a
1
.0

0
1
4
2
0
0
0
1
5
1
2
2
8

1
.0

0
1
4
2
0
1
1
4
1
6
9
1
1
2

1
.0

0
1
4
2
0
1
1
4
7
6
7
8
0
5

1
.0

0
1
4
2
0
1
2
5
7
4
1
5
9
1

1
.0

0
1
4
2
0
1
3
2
6
4
7
1
8
8

b
1
.0

0
7
2
3
4
3
8
3
6
4
9
7
4
×

1
0
−

4
1
.0

0
7
2
3
4
2
2
1
2
4
9
0
9
0
×

1
0
−

4
1
.0

0
7
2
3
4
0
6
0
3
4
5
9
6
7
×

1
0
−

4
1
.0

0
7
2
3
3
8
9
7
6
9
0
6
4
×

1
0
−

4
1
.0

0
7
2
3
3
7
3
7
2
8
1
2
1
3
×

1
0
−

4

c
2
.3

0
8
7
1
2
7
2
6
7
9
2
6
5
×

1
0
2

2
.3

0
9
0
6
5
3
3
7
7
5
4
3
4
4
6
×

1
0
2

2
.3

0
9
0
6
7
2
1
1
2
3
2
2
3
4
×

1
0
2

2
.3

0
9
1
0
1
5
4
7
2
1
5
1
2
7
×

1
0
2

2
.3

0
9
1
2
3
1
6
6
7
4
2
2
6
1
×

1
0
2

d
1
.0

0
1
4
2
0
0
0
1
5
0
5
0
3

1
.0

0
1
4
2
0
1
1
4
1
6
2
9
4
4

1
.0

0
1
4
2
0
1
1
4
7
6
0
6
6
1

1
.0

0
1
4
2
0
1
2
5
7
2
4
4
2
8

1
.0

0
1
4
2
0
1
3
2
6
3
1
9
7
0

T
a
b
le

4
.

P
er

io
d
ic

o
rb

it
s

a
ro

u
n
d

L
1
:

F
a
m

il
y

C
(µ

=
0
.0

0
0
0
0
3
,
R

=
1
4
9
5
9
7
8
7
0
.6

1
k
m

).

P
a
ra

-
m

e
te

r
C

a
se

1
C

a
se

2
C

a
se

3
C

a
se

4
C

a
se

5

X
o

−
1
.0

1
0
0
3
0
2
2
6
3
8
5
0
4

−
1
.0

1
0
0
3
0
2
2
6
5
0
9
1
6
3

−
1
.0

1
0
0
3
0
2
2
6
7
1
0
8
2
1

−
1
.0

1
0
0
3
0
2
2
7
1
3
9
3
5
0

−
1
.0

1
0
0
3
0
2
2
7
2
5
8
3
7
5

Ẏ
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Figure 3. Periodic orbits around L2: Family C.

6. Conclusion

We study the effect of triaxial rigid body on the periodic orbits around collinear liberation
points, we also discussed the stability of these periodic orbits.

In Fig. 1, we draw the periodic orbits around L2 in all five cases. As we increase
the oblateness of the smaller primary, periodic orbits are shifting towards the origin and
expanding. In Fig. 2, we draw the periodic orbits around L3 in all five cases. In this,
as we increase the oblateness of the smaller primary, we observe again that the periodic
orbits are shifting towards the origin and expanding. In Fig. 3, we draw the periodic
orbits around L1 in same manner. In this, we observe that the periodic orbits go on
shrinking and shifting away from the origin. In all the cases, the periodic orbits are
symmetrical to x-axis. Again we have proved that the periodic orbits are unstable since
in all the cases, stability parameter |a| > 1.
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