Tutorial 3

Calibration Structure of a MS Amplitude Calibration
Phase Calibration
A look at the calibrated data

General Advice

Read the help corresponding to a given task carefully, at least once.
Read the text which appears in the 'logger' when you run the text.

A CASA trick

tget <taskname> - will fill in the <keyword>=<value> pairs from the last execution of this task

Flagging

3C223.1_240MHz.MS
> Spw='0:0~22'
> Spw='0:44~63'
> Antenna='1'; timerange='22:37:48~25:10:08'
» Antenna='3'; timerange='23:40:33~25:14:53'

Objective of Calibration

- $V_{i j}(\mathrm{obs})=\mathrm{G}_{\mathrm{i}} \mathrm{G}_{\mathrm{j}} \mathrm{V}_{\mathrm{i}}$ (true)
- V_{ij} - visibilities (cross-correlations)
- G_{i}, G_{j} - Antenna gains (complex nos)
- Operationally done via χ^{2} minimisation
$\mathrm{V}_{i \mathrm{i}}($ predicted $)=\boldsymbol{G}_{\mathrm{i}} \boldsymbol{G}_{\mathrm{j}}^{*} \mathrm{~V}_{\mathrm{i}}($ model $)$
$\chi^{2}=\sum_{\mathrm{ij}}\left(\mathrm{V}_{\mathrm{i}}(\mathrm{obs})-\mathrm{V}_{\mathrm{i}}(\text { predicted })\right)^{2}$
- Degrees of freedom $\mathbf{G}_{i}, \boldsymbol{G}_{\mathrm{j}}$ and V_{i} (model)
- Constraints - V_{ij} (obs)
- Approach
- Minimise degrees of freedom
- N complex Gs (cannot be reduced)
- Simplest possible $\mathrm{V}_{\mathrm{i}}($ model $)$ Point sources

Structure of a MS

- THREE data columns
- Observed data $\mathrm{V}_{\mathrm{ij}}(\mathrm{obs})$
- Corrected data $\boldsymbol{G}_{i}^{-1} \boldsymbol{G}_{j}^{-1+} V_{i}($ obs $)$
- Model data $V_{i j}$ (model)

Establishing a Flux Scale

Approach - observe a source of known strength, Primary Flux calibrators - 3C48, 3C286, 3C147 setjy
(Flux of 3C286)
$3 C 286$ [I=20.692, Q=0, U=0, V=0] Jy, (PerleyButler 2010)

Calibration

G.'s are a function of both frequency and time

Key Assumption - Calibration can be separated into frequency and time dependent parts.

Bandpass calibration - Calibration of the frequency dependent part of G's

Approach - use a strong source with no spectral lines in the band of interest.
bandpass - 3C286

Calibration ...

Gain calibration - Calibration of time dependent part of $\mathrm{G}_{\mathrm{i}} \mathrm{s}$.

Approach - Use a strong source known to be nonvariable over the time scale of observations gaincal - 3C286

