Imaging in Radio Astronomy

by Subhashis Roy

Fourier transform and imaging

$$A(l,m).I(l,m) = \int_{-\alpha}^{\alpha} \int_{-\alpha}^{\alpha} V(u,v)e^{2\pi i(ul+vm)} dudv$$
(1)

Holds good if $\Delta \nu . \Delta \tau_g \ll 1$ and $w.(n-1) \ll 1$ or $w.(l^2+m^2) \ll 1.$

(1) holds if V(u,v) is a continuous fn. In practice, it is discrete and uneven.

Rewrite (1) as a DFT relation:

 $I(l,m) = \frac{1}{M} \sum_{k=1}^{M} V(u_k, v_k) e^{2\pi i (u_k l + v_k m)}$

Requires $\alpha\,N^4$ computation

FFT is faster.

Map resolution and pixel size

Highest value of u, v. F.T. relation. Resolution $\sim (u^2 + v^2)^{-0.5}$. How small is $\Delta l, \Delta m?$

Nyquist criterion: $\Delta l < \frac{1}{2.u_{\max}}, \quad \Delta m < \frac{1}{2.v_{\max}}$

 $\Delta l, \Delta m$ are pixels (or Cells).

How many pixels in a map ?

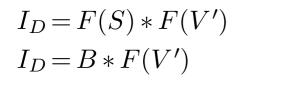
Want to cover maximum possible sky area.

Limited by Primary beam size.

$$N_l = \frac{\lambda}{D \cdot \Delta l}$$
.

F.T. and diffraction pattern of a source

Idea of Beam: $I(u,v) = \sum \delta(u-u_k, v-v_k)$ S -- Sampling function $I(l,m) = \frac{1}{M} \sum_{k=1}^{M} S.V'(u_k, v_k) e^{2\pi i (u_k l + v_k m)}$ $I_D = F(V^S) = F(S.V')$ Let's consider V' as a continuous visibility function.



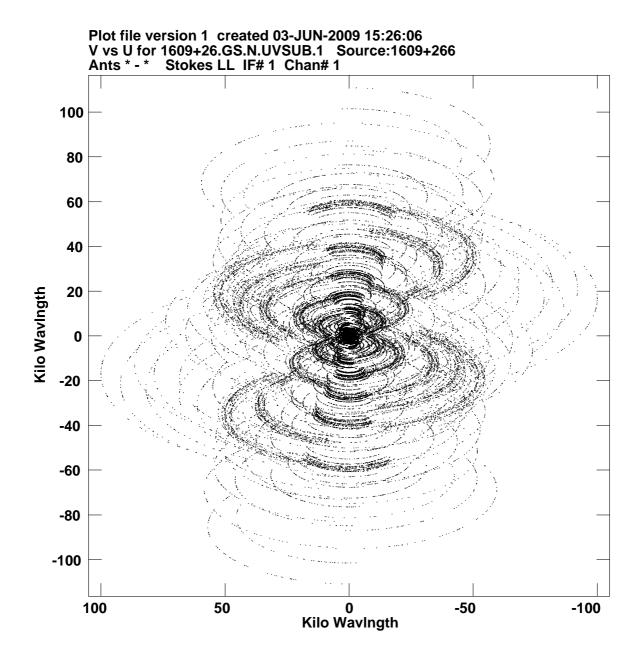


Figure 1. u, v coverage for the source 1609+266 with nearly full synthesis.

Various data Weights

Data weights changes Beam pattern to reduce Diffraction Sidelobes.

Data Tapering (T_k) , Density weight (D_k) and reliability weight (R_k) :

Tapering: Reduced contribution from edges.

Density weight: Data from different parts of u, v plane gets uniform weight (uniform weighting). Density weight=1 (Natural weighting). Reliability weight: More noisy data from a few antennas get reduced weight. $S^W(u,v) = \sum T_k \cdot D_k \cdot R_k \cdot \delta(u - u_k, v - v_k).$

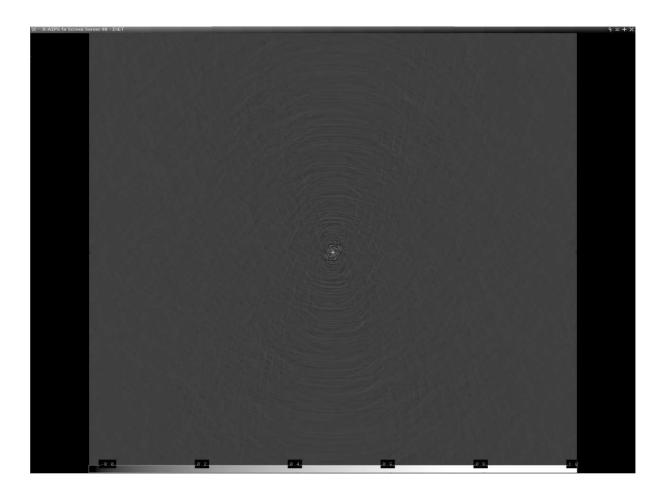


Figure 2. Beam pattern for the full synthesis data of GMRT on 1609+266.

Various assumtions and their effect on the map

Non-coplanar baselines and the `w' term

 $w(l^2+m^2){\not\ll}1$.

Use multiple facets each of which corrects for w term at the facet centre (polyhedron imaging).

Frequency channel averaging and Bandwidth smearing

u, v varies due to finite bandwidth.

Time averaging of data and source smearing

Source V(u,v) changes with `t'.