Galaxies: Structure, formation and evolution

Lecture 7

Yogesh Wadadekar

Jan-Feb 2024

IUCAA-NCRA Grad School 1/30



Gaia Astrometric Accuracy and sample size
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GAIA mission

@>esa

[1000 mition objects
10 kpc measuredto | = 20 20 kpe

>20 globular clusters “Horizon for proper arotions
Many thousands of Cepheids and RR Lyrae accurate to 1 km/s

Dark matter in disc measured
¢ from distances/motions of K giants
Mass of galaxyfrom 30 open clusters
rotation curve at 15 kpe Sun within 500 pc

Horizon for detection of
Jupiter mass-planets’(200 pc)

£ 3
Dynamics of disc,
Ly spiral arms, and bulge

Proper motions in LMC/SMC / ; \ g :
individually to 2-3 km/s Horizon for distances \
accurate to 10 per cent

[ General relativistic light-bending determined to 1 partin 10° | 1 mlc;(éarcs;cc/yr = aloo l;m{s at z|)= 0.03
irect connection to inertial

DR3 released in June 2022. DR4 in 2025
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Gaia DR3
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| mentioned that Gaia will measure the phase space distribution of
stars in 6 dimensions - i.e. it will measure x, y, z, vy, vy, v, for each
star. Gaia will measure transverse velocity (via proper motion) and
radial velocity for each star. How can we determine three numbers
Vx, Vy, vz from only two measurements?
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How can Gaia distinguish between stars and quasars?
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Galaxy model can be purely empirical with Gaia data
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Stars in elliptical galaxies

Stars in E galaxies have some ordered motions (e.g., rotation), but
most of their kinetic energy is in the form of random orbits. Thus, we
say that ellipticals are pressure-supported systems To measure the
kinematics within galaxies we use absorption lines. Each star emits a
spectrum which is Doppler shifted in wavelength according to its
motion. Random distribution of velocities then broadens the spectral
lines relative to those of an individual star. Systemic motions (rotation)
shift the line centroids.
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Intensity, Velocity,Dispersion

NGC 2549 j NGC 2685 \ NGC 2695 _T\ NGC 2699
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How to measure velocity dispersion?

In ellipticals, one often measures the central velocity dispersion.\Why
measuring this is easier? Why is it not useful for spiral disks?
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Velocity anisotropy in elliptical galaxies

al|s=

FiG. 3.~ The quantty V& against ellipticity, L-Z]]'.Estlcnis with
MY = w2005 are shown us filled circles: ellipticals with M3¥ < —20.5,
as open circles; and the bulges of disk gal as crosses. The solid
fine shows the [Vie, sjrelation for oblate galaxies with isotropic
velogity dispersions {Binney 1978).

Ellipticals are not rotationally supported.
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Anisotropy parameter and dependence on luminosity
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This trend does not continue to fainter levels. Dwarf Es hardly rotate.
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Violent relaxation

Stars in galaxies are collisionless systems. In steady state, stars will
continue in steady state orbits without perturbing each other. However,
the situation can be very different in a system that is not in equilibrium.
A changing gravitational potential will cause the orbits of the stars to
change. Because the stars determine the overall potential, the change
in their orbits will change the potential. This process of changes in the
dynamics of stars caused by changes in their net potential is called
violent relaxation. Galaxies experienced violent relaxation during
their formation. Can violent relaxation occur later?
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Violent relaxation

Stars in galaxies are collisionless systems. In steady state, stars will
continue in steady state orbits without perturbing each other. However,
the situation can be very different in a system that is not in equilibrium.
A changing gravitational potential will cause the orbits of the stars to
change. Because the stars determine the overall potential, the change
in their orbits will change the potential. This process of changes in the
dynamics of stars caused by changes in their net potential is called
violent relaxation. Galaxies experienced violent relaxation during
their formation. Can violent relaxation occur later? Interactions
between galaxies can also bring about violent relaxation. The process
takes place relatively quickly (108 yr) and redistributes the motions of
stars.
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Crossing time or dynamical timescale

Teross = 5\;
For a spherically symmetric system it can be shown that:

Tcross ~ ——. Even for non-spherically symmetric systems, this gives
\/Gr

a rough value for crossing time. Plugging in numbers for a typical
galaxy, one gets a crossing time of ~ 102 years.
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Measuring dynamical mass via virial theorem

The virial theorem can be applied to any system of stars that is in a
steady state such as:

@ elliptical galaxies
@ evolved star clusters, e.g. globular clusters

@ evolved clusters of galaxies (with the galaxies acting as the
particles, not the individual stars)
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Measuring dynamical mass via virial theorem

The virial theorem can be applied to any system of stars that is in a
steady state such as:

@ elliptical galaxies
@ evolved star clusters, e.g. globular clusters

@ evolved clusters of galaxies (with the galaxies acting as the
particles, not the individual stars)

It obviously cannot be used for:

@ merging galaxies

@ newly formed star clusters

@ clusters of galaxies that are still forming/still have infalling galaxies
Can it be applied in the solar system today?
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Measuring dynamical mass via virial theorem

Consider a spherical elliptical galaxy of radius R that has uniform
density and which consists of N stars each of mass m having typical
velocities v. Can we measure typical velocity of stars in an elliptical
galaxy?
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Measuring dynamical mass via virial theorem

Consider a spherical elliptical galaxy of radius R that has uniform
density and which consists of N stars each of mass m having typical
velocities v. Can we measure typical velocity of stars in an elliptical
galaxy?
2
2T+ U=2(1Nmo?) - 2GM _
2 5 r
where the gravitational PE is for uniform sphere of mass M and radius
R. This implies: M ~ "%R Can we measure the mass of supermassive
black holes using this?
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Even black holes in small galaxies can be measured!
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Baryonic mass versus dynamical mass

Recall that
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How would you use the Virial Theorem to estimate the mass of a
virialised cluster?
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How would you use the Virial Theorem to estimate the mass of a
virialised cluster? Zwicky’s 1937 measurement was M/L = 300 for the
Coma cluster.

The maximum M/L ratio of a galaxy is about 20. Is dark matter really
at least 14 times more than baryonic matter in clusters?
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Cluster: Virialised or not?
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The Tully Fisher relation
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Why is the TF relation so special?

@ it connects a property of the dark halo - the maximum circular
speed - with the product of the net integrated star formation
history, i.e., the luminosity of the disk. This implies: Halo-regulated
galaxy formation/evolution?

@ The scatter is remarkably low. There is some important feedback
mechanism involved, which we do not understand yet. The TFR
offers some important insights into the physics of disk galaxy
formation.
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Faber Jackson relation
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Kormendy relation
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This relation tells us something about galaxy formation!
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Dissipationless less merging or dissipational collapse?

From virial theorem, the dynamical M « Ro?.

Luminosity L o IR? where / is the mean surface brightness

If M/L is constant, then M « IR? « Ro? and IR x o2

If ellipticals formed via dissipationless (dry) merging, kinetic energy per
unit mass (~ o2 remains constant), implying R oc /=

If ellipticals formed via dissipative collapse of gas, then | « MR—2,
implying R oc 1705

Kormendy relation gives R o 1798, What does this imply?
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For elliptical galaxies

o L=f(o)
® pe = g(re)
@ L = h(pue,re)

Could these correlations be projections of a higher dimensional
correlation?
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The Fundamental Plane
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The Edge-on view of the Fundamental Plane
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How will you use the FP as a distance indicator?
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FP and the virial theorem

GM (V)2
—— — kg
(R) 2
the 3D velocity and radius will be some scaled version of the projected
version. R = kg(R), V2 = ky(V)2, L = k; IR? Then one can write:

R = KsgV2I""(M/L)™", L= Kg V*I7'(M/L)2
where the structure coeffients

Ken— 1€ kg 'E
SR 2Gkgkiky' "t 4GPKZk, K2
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What do deviations of the observed relations from these scalings
indicate?
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