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Emission lines from AGN or from non-AGN source?

Can normal galaxies also show emission lines in their spectrum?

Is there a difference in the ionizing spectrum of massive stars and that
of AGN?
Massive stars have a clear cut-off in their ionizing spectrum, at the
Lyman-limit of helium (corresponding to 228 Angstrom), whereas the
non- thermal radiation from AGNs extends to much higher photon
energies. As a consequence, the ratio of collisionally excited lines to
that of lines which are produced in the course of recombination is
larger in the case of an AGN–like ionizing radiation field.
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Strength of an emission line

How does one measure the strength of an emission/absorption line?
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The BPT diagram with 240,000 galaxies from SDSS

Trouille et al. (2011), Baldwin, Phillips & Terlevich (1981) Is is possible
to separate AGN and star-forming galaxies without a spectrum?
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WISE colors

Mingo et al. (2016) W1, W2, W3, W4 at 3.4, 4.6, 12 and 22 microns
respectively.
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Different lines for BPT diagrams

Groves & Kewley (2008)
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What have we covered so far?

are aspects of the phenomenology of Quasars (radio-loud and
radio-quiet, OVVs, blazars, optically quasars), Seyfert 1 and 2. Next
we move to the study of radio emission from AGN.
Syllabus:
Phenomenology of AGNs (Seyferts, Quasars, Radio Galaxies,
LINERS, BL Lacs) with a survey of continuum, emission and
absorption features of spectra - Black hole and accretion disc models
for AGNs - Emission line regions (BLR, NLR) - Physics of jets and hot
spots.
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Typical stellar spectrum is blackbody!

IUCAA-NCRA Grad School 8 / 20



ncralogo

Black body spectrum versus frequency
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Typical radio spectrum

Why can’t this possibly be a blackbody?
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Dominant physical mechanism for continuum radio
emission

radio emission due to synchrotron emission by relativistic charged
particles (electrons) in a magnetic field.
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Thermal Bremsstrahlung - Free-Free radiation
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Characteristic frequency of synchrotron radiation

νc =
3γ2eB
4πmec

∼ 4.2 × 106γ2(B/1G) Hz

Assuming typical IGM magnetic field strengths, what must be the γ for
radiation to be emitted at a characteristic frequency of 1 GHz?
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Synchrotron Power radiated by an electron

P =
4
9

e4B2γ2

m2
ec3

For more detailed discussion on synchrotron processes, see Radiative
Processes in Astrophysics by Rybicki and Lightman.
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Synchrotron self absorption

If the intensity of synchrotron radiation within a source becomes
sufficiently high, then re-absorption of the radiation by the synchrotron
electron themselves becomes important. This re-absorption of
radiation is termed as ’synchrotron self absorption’. Synchrotron
self-absorption will drastically modify the spectrum of the source at low
frequencies.
At high densities and at low enough frequencies, synchrotron self
absorption becomes important, and part of the radiation absorbed by
the relativistic electrons along the propagation path.
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Synchrotron spectrum

Note: Both axes are plotted on a log scale.
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Synchrotron spectrum

If the electron energy distribution is a power-law N(E)dE = N0E−sdE ,
th resultant synchrotron radiation is also a power law.
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A deep GMRT Radio image

GMRT proposal 20_006, PI: Wadadekar, rms 150 µJy
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Even deep radio images are quite sparse

Median stack of FIRST survey at 2e5 quasar positions
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Main morphological features of a radio galaxy
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