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• These problems are for your own practice and will not be graded. They are designed to help you prepare for the
mid-term and final examinations. However, I strongly encourage you to ask questions and discuss the solutions.

• If you spot any potential errors or find a question unclear, please do not hesitate to let me know.

• You are welcome to consult books, online resources, and discuss the problems with your peers. The key, however, is to
ensure you personally understand the solutions, as this will be vital for your performance in the examinations.

• If you choose to use notation or conventions that differ from those presented in lectures, please define them clearly at
the start and apply them consistently.

1. Consider a two-level system with lower level a and upper level b (energy levels Eb > Ea, transition frequency νba),
with degeneracies ga and gb, respectively.

(a) The critical density (ncrit) is the collider density ncoll at which the rate of collisional de-excitation equals the
rate of spontaneous radiative de-excitation. Find an expression for ncrit in terms of the spontaneous radiative
de-excitation coefficient Aba and the collisional de-excitation coefficient Cba ≡ ncoll⟨σbav⟩, where ⟨σbav⟩ is the
velocity-averaged collisional cross-section.

(b) Starting with the steady-state equation for the level populations

na
nb

gb
ga

=
Cba +

c2

2hν3ba
AbaIνba +Aba

Cbae−hνba/kBTK + c2

2hν3ba
AbaIνba

,

rewrite this equation in the Rayleigh-Jeans limit. Assume the radiation field is the CMB, so Iνba ≈ Bν(TCMB).

(c) Show that the general expression for Tex can be expressed in terms of the kinetic temperature TK , the radiation
temperature TCMB, and the ratio of the collider density to the critical density, ncoll/ncrit.

(d) What does this new form tell you about the Tex in the very low density (ncoll ≪ ncrit) and very high density
(ncoll ≫ ncrit) limits?

2. The collisional rate coefficient is defined as

qab = ⟨σabv⟩ =
∫ ∞

0
dv σab(v) v f(v),

where f(v) is the 3D speed distribution.

Assume a gas of particles (mass m) at a kinetic temperature TK . The cross-section for a collisional excitation a → b
(which requires energy ∆E = hνba) is given by a simple “step” model

σab(E) =

{
0 if E < ∆E

σ0 if E ≥ ∆E
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where E = mv2/2 is the kinetic energy of the particle. Write down and evaluate the integral for qab = ⟨σabv⟩ using
the 3D Maxwell-Boltzmann speed distribution

f(v) dv = 4π

(
m

2πkBTK

)3/2

v2 exp

(
− mv2

2kBTK

)
dv.

Show that the final rate coefficient has the form

qab(TK) ∝ T 1/2
K

(
1 +

∆E

kBTK

)
e−∆E/kBTK .

What does the e−∆E/kBTK term represent physically?

3. Let a hydrogen atom be placed in a uniform magnetic field B⃗.

(a) Show that the vector potential

A⃗ =
1

2

(
B⃗ × x⃗

)
produces the correct uniform magnetic field B⃗. Does this potential satisfy the Coulomb gauge?

(b) Assuming the charge of the electron to be−e, show that the non-relativistic Schrödinger equation for the system
(assuming Coulomb gauge) is[

− ℏ2

2me
∇⃗2 − e2

r
− iℏe
mec

A⃗ · ∇⃗+
e2

2mec2
A⃗2 − µ⃗ · B⃗

]
ψ(x⃗) = Eψ(x⃗),

where µ⃗ is the electron spin angular moment.

(c) Show that the linear term in A⃗ can be written as

e

2mec
B⃗ · L⃗.

(d) Estimate the order of magnitude of the magnetic field (in Gauss) that is required to make the quadratric term in
A⃗ comparable to the linear term. How does this compare with the typical magnetic fields observed in the Milky
Way?

(e) Show that, ignoring the quadratic term, the Schrödinger equation reduces to[
− ℏ2

2me
∇⃗2 − e2

r
+

e

2mec
B⃗ · (L⃗+ 2S⃗)

]
ψ(x⃗) = Eψ(x⃗).

(f) Suppose we treat the magnetic field term as perturbation over the unperturbed Hamiltonian

H0 = −
ℏ2

2me
∇⃗2 − e2

r
.

Assuming the magnetic field to be along the z-direction, show that the energy corrections are given by

∆El,ml,ms = ℏωL (ml + 2ms),

where
ωL =

eB

2mec

is the Larmor angular frequency. What is the energy split for the hydrogen ground state?

4. Let us assume that the relativistic motion of an electron in a hydrogen atom can be described by the Klein-Gordon
equation.
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(a) Find the Klein-Gordon equation for an electron moving in the electrostatic potential of an infinitely heavy nucleus
(just a proton in the case of hydrogen).

(b) Assuming we are looking for the stationary state solutions, let us decompose the electron wave function as
ψ(x⃗, t) = R(r) Ylm(θ, ϕ) e−iEt/ℏ. Find the radial equation satisfied by R(r) in a form that resembles the cor-
responding equation obtained from the non-relativistic Schrödinger equation.

(c) Compare the radial differential equation with its non-relativistic counterpart and obtain the energy eigenvalues
Enl. You do not need to derive the solution, try to obtain them from the knowledge of the energy eigenvalues in
the non-relativistic case. Also ensure that the definition of the principal quantum number n is identical to that
used in the non-relativistic equation, i.e., n can take values l + 1, l + 2, . . . for a given l.

(d) Expand the energy eigenvalues obtained above in powers of α2 (α being the fine structure constant) and interpret
the results for the terms corresponding to α0, α2 and α4. How do these solutions compare with those obtained
from the Dirac equation (as derived in the class)?

5. The Dirac Hamiltonian for a free particle is
H = c α⃗ · p⃗+ βmc2.

(a) Show that the orbital angular momentum L⃗ of the particle is not conserved, i.e.,

[H, L⃗] ̸= 0.

(b) Consider the 4× 4 spin operator:

Σ⃗ =

(
σ⃗ 0
0 σ⃗

)
where σ⃗ are the 2× 2 Pauli matrices. Prove that the spin operator Σ⃗ is also not conserved, by calculating [H, Σ⃗].

(c) Finally, show that the total angular momentum

J⃗ = L⃗+
ℏ
2
Σ⃗

is conserved, by proving [H, J⃗ ] = 0.

6. The different energy levels of the hydrogen atom are split because of the relativistic corrections. For example, the
Lyman series lines are split into a doublet

1S1/2 ←→ nP1/2, 1S1/2 ←→ nP3/2.

Consider the Balmer series lines which connect the n = 2 state with higher states n > 2.

(a) Write down all the possible allowed transitions (accounting for the fine-structure) between different levels ofn = 2
and any n > 2 states. Please give short justifications (based on selection rules) for each of these transitions.

(b) What is the number of distinct components of the Balmer line for a 2←→ n transition (n > 2)?

7. An astronomer is studying a cold atomic hydrogen (HI) cloud. To determine its properties, they conduct a classic
“on-off” 21 cm line observation using a single-dish radio telescope.

• “On-Source”: They point the telescope directly at a bright, background continuum source (a quasar) that is behind
the cloud. The brightness temperature of the background quasar (measured at a frequency just off the 21 cm line) is
Tbg = 50.0 K. The brightness temperature at the line-centre, including the background source, is Ton,peak = 40.0 K.
Note that Ton,peak is lower than the off-line continuum level because the cold cloud absorbs some of the quasar’s
continuum radiation at the line frequency.

• “Off-Source”: They point the telescope to an adjacent part of the cloud, away from the background quasar. The
peak brightness temperature of the emission line is measured to be Toff,peak = 5.0 K.
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Assume the cloud is uniform over the small angular distance between the two pointings. Both the emission and ab-
sorption profiles are well-fit by a Gaussian with the same Full-Width at Half-Maximum (FWHM) of ∆v = 10.0 km/s.

The cloud is at a distance D = 500 pc and has an angular diameter of θ = 1.0◦.

(a) Calculate the spin temperature (Ts) and peak optical depth (τpeak) using the “on” and “off” measurements.

(b) Show that the column density of neutral hydrogen NHI is given by the expression

NHI =

(
32πkBTs
3A10ch

)∫
dv τv

where dv/c = dν/ν10 is the velocity, ν10 is the frequency of the 21 cm line and all other symbols have their usual
meanings.

(c) Using the observed measurements, find the column density of the cloud under consideration.

(d) Calculate the total HI mass (MHI) of the cloud.

8. The Schrödinger equation for a diatomic molecule, under Born-Oppenheimer approximation, is given by

− ℏ2

2µ

[
χ′′
e,v,J(R)−

J(J + 1)

R2
χe,v,J(R)

]
+ Ee(R)χe,v,J(R) = Ee,v,Jχe,v,J(R),

where χe,v,J(R) is the nuclear radial wave function, µ is the reduced mass of the nuclei, R is the distance between
the two nuclei, Ee(R) is the eigenvalue of the electronic eigenstate and Ee,v,J is the total energy. The characteristic
quantum numbers are v, e, J .

(a) Assuming the rigid rotor model (i.e., R = R0 in the rotational energy term) and approximating the electronic
potential as a harmonic oscillator around the equilibrium radius R0, show that the total energy of the molecule
can be written as

Ee,v,J = Ee(R0) + EJ + Ev, EJ =
ℏ2J(J + 1)

2µR2
0

, Ev = ℏω0

(
v +

1

2

)
,

where ω0 =
√
E′′

e (R0)/µ is the vibrational frequency.

(b) Going beyond the rigid rotor model, account for the centrifugal distortion effects by considering the effective
potential

Veff(R) = Ee(R) +
ℏ2J(J + 1)

2µR2
,

and expanding it about the new equilibrium position RJ defined by

V ′
eff(RJ) = 0.

Assuming RJ is close to R0, show that the rotational energy levels can be approximated as

EJ ≈ hBJ(J + 1)− hDJ2(J + 1)2

where B = h/(8π2I0) (with I0 = µR2
0) is the standard rotational constant and D is the centrifugal distortion

constant. Find an expression for D in terms of B and ω0.

(c) How does centrifugal distortion affect the observed “rotational ladder”, i.e., the frequencies νJ+1→J = (EJ+1 −
EJ)/h, of a molecule like CO?

9. A radio telescope is pointed at the center of a dense molecular cloud, measuring the peak line brightness above the
background of the J = 1→ 0 transition for two isotopologues, 12CO and 13CO. The observed values and assumptions
are as follows:

• Peak line brightness (above the background) Tline(12CO) = 15.27 K
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• Peak line brightness (above the background) Tline(13CO) = 3.60 K

• Background temperature Tbg = 2.73 K (CMB)

The intrinsic abundance ratio of the molecules is [12CO]/[13CO] = 70. The optical depth is proportional to the column
density (and thus the abundance). You can assume that the gas density is high enough that both lines are thermalized,
so their excitation temperature is equal to the gas kinetic temperature.

(a) Calculate the kinetic temperature based on the observations and assumptions, and also the optical depth of both
lines.

(b) Why is the observed brightness ratio (4.24) so different from the intrinsic abundance ratio (70)?
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