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• These problems are for your own practice and will not be graded. They are designed to help you prepare for the
mid-term and final examinations. However, I strongly encourage you to ask questions and discuss the solutions.

• If you spot any potential errors or find a question unclear, please do not hesitate to let me know.

• You are welcome to consult books, online resources, and discuss the problems with your peers. The key, however, is to
ensure you personally understand the solutions, as this will be vital for your performance in the examinations.

• If you choose to use notation or conventions that differ from those presented in lectures, please define them clearly at
the start and apply them consistently.

1. Recombination lines occur when an electron recombines with the proton to form the neutral atom. The electron can
be captured at a higher state and then it cascades downwards giving rise to different lines.

(a) Consider the recombination line arising from a transition n+∆n −→ n, with n≫ 1 and ∆n ∼ 1, Show that the
frequency of this line scales as ∆n/n3.

(b) Determine the frequency of the H 90α line (i.e., the n = 91 −→ 90 transition of hydrogen).

(c) Radio recombination lines can be used to determine the ratio of helium to hydrogen densities in the ionized regions
of the interstellar medium. Let us assume that we can measure, say, the 90α line arising from recombination of
ionized hydrogen and also from the recombination of singly-ionized helium. Determine the frequency difference
between these two lines and find the equivalent Doppler velocity shift corresponding to this frequency difference.

2. The vector potential for an electromagnetic wave in free space can be expanded as

A⃗(x⃗, t) =
∑
k⃗

∑
α

[
aα(k⃗) êα(k̂) e

i(k⃗·x⃗−ωt) + a∗α(k⃗) ê
∗
α(k̂) e

−i(k⃗·x⃗−ωt)
]
,

where êα(k̂) are the polarization vectors (withα = 1, 2) orthogonal to the wave vector k⃗. The sum over k⃗ is over all wave
vectors allowed in a cubic box of volume V = L3 with boundary conditions kx, ky, kz = 2πnx/L, 2πny/L, 2πnz/L

with nx, ny, nz being integers. The angular frequency is given by ω = c|⃗k|.
Derive the expression for Hamiltonian

Hrad =
1

8π

∫
d3x

(
E⃗2 + B⃗2

)
,

and the momentum
P⃗rad =

1

4πc

∫
d3x

(
E⃗ × B⃗

)
,

in terms of the coefficients aα(k⃗) and a∗α(k⃗).
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3. (a) Show that the Lagrangian of a (classical) charged particle of mass m and charge q in presence of an external
electromagnetic field is

L =
1

2
m ˙⃗x2 − qϕ(x⃗, t) + q

˙⃗x

c
· A⃗(x⃗, t),

where ϕ is the electric scalar potential and A⃗ is the magnetic vector potential. It is sufficient to show that the
above Lagrangian gives the correct equation of motion.

(b) Hence show that the Hamiltonian is

H =
1

2m

[
p⃗− q

c
A⃗(x⃗, t)

]2
+ qϕ(x⃗, t).

(Thus one can incorporate the effects of the electromagnetic field into the Hamiltonian by replacing p⃗ → p⃗ −
(q/c)A⃗ and H → H − qϕ.)

(c) The state of a spin-1/2 particle can be written as

⟨x⃗|ψ⟩ =
(
ψ+(x⃗)
ψ−(x⃗)

)
,

where the wave functions ψ±(x⃗) satisfy the Schrödinger equation

iℏ
∂ ⟨x⃗|ψ⟩
∂t

= ⟨x⃗|H|ψ⟩ .

In the absence of any external field or potential, this becomes

iℏ
∂ ⟨x⃗|ψ⟩
∂t

= − ℏ2

2m
∇⃗2 ⟨x⃗|ψ⟩ .

Show that the above equation is equivalent to

iℏ
∂ ⟨x⃗|ψ⟩
∂t

= − ℏ2

2m

(
σ⃗ · ∇⃗

)2
⟨x⃗|ψ⟩ ,

where the components of σ⃗ are the 2× 2 Pauli matrices. This is a simple way of introducing spin (by hand) into
the non-relativistic Schrödinger equation.

(d) Argue that in the presence of electromagnetic fields, the above equation modifies to

iℏ
∂ ⟨x⃗|ψ⟩
∂t

=
1

2m

[
σ⃗ ·

(
−iℏ∇⃗ − q

c
A⃗
)]2

⟨x⃗|ψ⟩+ qϕ ⟨x⃗|ψ⟩ ,

where A⃗ and ϕ should be treated as quantum mechanical operators (in the coordinate basis).
(e) Show that the above equation can be written as

iℏ
∂ ⟨x⃗|ψ⟩
∂t

=
1

2m

(
−iℏ∇⃗ − q

c
A⃗
)2

⟨x⃗|ψ⟩ − qℏ
2mc

σ⃗ · B⃗ ⟨x⃗|ψ⟩+ qϕ ⟨x⃗|ψ⟩ ,

where B⃗ = ∇⃗ × A⃗ is the magnetic field. Can you interpret the significance of this equation?

4. Instead of the treating the electromagnetic field quantum mechanically, let us work out the transition rates when the
field is classical.

(a) In the Coulomb gauge ∇⃗ · A⃗ = 0, the vector potential A⃗ satisfies the wave equation, and hence can be expanded
as

A⃗(x⃗, t) =

∫
d3k

(2π)3

[
a(k⃗) ϵ̂(k⃗) ei(k⃗·x⃗−ωt) + c.c.

]
, ω = k c,

where ϵ̂(k⃗) represents the direction of the polarization. Calculate the energy density

u =
1

8πV

∫
d3x

[
E⃗2(x⃗, t) + B⃗2(x⃗, t)

]
in the radiation field and show that the specific intensity is given by

Iω(n̂) =
1

V

( ω

2πc

)4
|a(k⃗)|2.
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(b) The interaction between an atom and the radiation field can be described by the Hamiltonian

H1 =
e

mec
A⃗ · P⃗ = − ieℏ

mec
A⃗ · ∇⃗.

Show that H1 can be written as

H1 = V

∫
d3k

(2π)3

[
Habs(k⃗) e−iωt +Hemi(k⃗) eiωt

]
.

Write down the expressions for Habs(k⃗) and Hemi(k⃗).

(c) Using the expressions for Fermi’s golden rule

Rabs
a→b =

2π

ℏ2
∣∣∣⟨Eb|Habs|Ea⟩

∣∣∣2 δD(ω − ωba),

Remi
b→a =

2π

ℏ2
∣∣⟨Ea|Hemi|Eb⟩

∣∣2 δD(ω − ωba),

show that the absorption rate for the radiation-matter interaction is

Rabs
a→b =

4π2e2

m2
ecω

2
ba

∫
dΩ Iω(n̂) |Mba(k⃗)|2,

where
Mba(k⃗) =

∫
d3x ψ∗

b (x⃗) e
i⃗k·x⃗ ϵ̂(k⃗) · ∇⃗ψa(x⃗).

(d) Find out the corresponding emission rate and show that Remi
b→a = Rabs

a→b

(e) What is main difference you see between the classical and quantum treatments of the radiation field?

5. Consider a free electron (ignoring spin) of charge −e moving in a uniform time-independent magnetic field B⃗.

(a) Show that the vector potential

A⃗ =
1

2

(
B⃗ × x⃗

)
produces the correct uniform magnetic field B⃗.

(b) Now orient the axes such that the magnetic field is in the z-direction, i.e., B⃗ = Bẑ. Calculate the vector potential
for this case.

(c) Use the gauge variance of B⃗ under the transformation A⃗→ A⃗+ ∇⃗φ to show that the quantity

A⃗ = −B y x̂

too is an appropriate vector potential. What φ did you choose to obtain the new vector potential from the old one
(give your answer up to an additive constant)?

(d) Show that the Hamiltonian for this system can be written as

H =
1

2me

(
Px −

e

c
By

)2
+

1

2me
(P 2

y + P 2
z ).

(e) Show that [H,Px] = [H,Pz] = 0.

(f) Given the above commutation relations, we can choose the wave functionψ(x⃗) to be a simultaneous eigenfunction
of H,Px, Pz . Let ψpx(x) be the eigenfunction of Px with eigenvalue px. Obtain the explicit form of ψpx(x).
Similarly, write down the explicit form of the eigenfunction ψpz(z) of Pz . What are the allowed ranges of the
eigenvalues px and pz?
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(g) Try a solution of the form
ψ(x⃗) = ψpx(x) ψpz(z) ξ(y),

and show that the Schrödinger equation Hψ = Eψ reduces to an equation which resembles a simple harmonic
oscillator system in the y-direction. Hence show that the energy eigenvalues are given by

En = (2n+ 1)ℏωL +
p2z
2me

, n = 0, 1, 2, . . . ,

where
ωL =

eB

2mec

is the Larmor angular frequency.

6. In the time-dependent perturbation theory, we start with a Hamiltonian of the form

H = H0 + ϵH1(t),

where ϵ is assumed to be a small number. We then assume solutions of the form

|ψ(t)⟩ =
∑
i

ci(t) |Ei⟩ e−iEit/ℏ,

expand the coefficients as
ci(t) = c

(0)
i (t) + ϵc

(1)
i (t) + ϵ2c

(2)
i (t) + . . .

put it back into the Schrödinger equation and obtain the perturbation solutions by equating terms with equal powers
of ϵ. For definiteness, we assume that the perturbation turns on at t = 0, hence ci(0) = c

(0)
i (the unperturbed solution).

We also assume that the system initially is on one of the stationary eigenstates, say, the ath one

ci(0) = c
(0)
i = δia.

All other coefficients c(0)i , i ̸= a vanish.

(a) Find the coefficients c(2)i (t) in the second order of perturbation. Interpret the solution physically. Write down the
solution ci(t) correct to the second order.

(b) Let the perturbed potential be such that ⟨Ea|H1(t)|Ea⟩ = 0. Find the solution for the state i = a (i.e., the state in
which the system was initially in) correct up to the second order. Interpret the result.

(c) Consider the scattering process
a+ γ −→ b+ γ′,

where an incident photon γ interacts with an atom in an initial state a resulting in the atom in state b and a
scattered photon γ′. The interaction, as we have seen in the lectures, is described by an Hamiltonian

H = H0 +H1 +H2,

where H0 is the unperturbed Hamiltonian in the absence of any interaction, H1 corresponds to the matter-
radiation interaction and H2 is the two-photon interaction.
Argue that the scattering amplitude vanishes in the first order perturbation when only H1 is considered.
If we consider the second order perturbation to find the lowest non-vanishing amplitude for H1, can we ignore
the H2 term? Explain your answer.

7. Consider a transition between two states |a⟩ and |b⟩, where the transition dipole moment X⃗ba is aligned with the z-axis
(i.e., X⃗ba = Xbaẑ). An incoming plane wave of radiation propagates along the x-axis (⃗k = kx̂).

(a) Calculate the relative absorption rate for the case where the radiation is linearly polarized along the z-axis (ê = ẑ).
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(b) Calculate the relative absorption rate for the case where the radiation is linearly polarized along the y-axis (ê = ŷ).

(c) Now consider right-circularly polarized (RCP) light. The polarization vector can be written as êRCP = (ŷ+iẑ)/
√
2.

Calculate the relative absorption rate for this case.

(d) Based on your results, explain how observing the absorption of polarized background radiation can be used to
probe the orientation of atoms (or molecules) in space. This is a principle behind studying interstellar magnetic
fields, where magnetic fields can align atoms/molecules.
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