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« The questions in this sheet are based on courses you are expected to have completed before attending this course.

« You may look up textbooks and/or consult friends for solving the problems, but make sure you understand the solutions
and the associated physics.

+ You need not submit the solutions. However, if you find any of these questions non-trivial/difficult, please revise the
corresponding chapters from relevant textbooks. In the extreme case you are unable to solve a problem, you may seek
help from the instructor.

1. Properties of Maxwell’s equations: The Maxwell’s equations are
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(a) Show that E and B satisfy the equations
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(b) Starting from the Maxwell’s equations, derive the Poynting’s theorem
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Interpret all the terms of the above equation.

2. Larmor’s formula: For a point charge ¢ moving along some arbitrary trajectory Z,(¢), the electric and magnetic fields
are given by
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and
B(t, %) = [ag], x E(t,7),

where R = |Z — Z4(t,)|, t, = t—|Z—Z,(t,)|/cis the retarded time, and 7 is a unit vector in the direction of ¥—Z(t).

(a) Interpret the terms in the above expressions and identify which of the terms correspond to the radiation? Isolate
those terms in the expression for the fields and write them as F,,q(t, ¥) and Byaq(t, 7).



(b) When the particles are non-relativistic Z, < ¢, and |Z| > |7, (the distance to an object is much larger than its
characteristic size), show that the radiation fields reduce to
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where r = |Z| and n = Z/r.
(c) Show that the flux associated with this radiation field is given by
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where @, = f'q and 0 is the angle between 7 and dg, i.e., between the direction of the radiation and acceleration
of the particle.

(d) Show that the total flux integrated over a surface of radius r is
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3. Beaming of radiation: Consider a radiation source moving at velocity v along the +z-axis in the lab frame L. Let the

rest frame of the source be denoted as R. The source emits waves with the wave vector

k= (E cos b, hd sin 6, 0)
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where 6 is the propagation angle from the z-axis and w is the angular frequency.

Source

(a) Derive the relativistic Doppler effect for frequency
W1, = YWR (1 + ECOSGR) ,
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where 6y, is the propagation angle in the rest frame of the source and v = 1/4/1 — v?/c2.
Simplify the expression for 6 = 0 and 6 = 7, and explain the physical meaning.

(b) Derive the angle transformation
sinOp
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when v — ¢. How does this relation lead to beaming of the radiation originating
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from a relativistic source?

4. Compton and inverse Compton scattering: Consider the scattering of a photon off an electron of rest mass m. The
incident photon has four-momentum moves in a direction k with a frequency w, while the scattered photon moves
along 7 with frequency wy. The initial electron has a velocity @;. Let ) be the angle between k and 7, v, between
and k, o, between i; and 7.

(a) Using energy and momentum conservation, derive the relation between the incident and scattered frequency of
the photon
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where 7; = 1/4/1 — u?/c2. Discuss the limits under which the result approaches that corresponding to Thomson

scattering.



(b) Show that, for an electron initially at rest u; = 0, the expression simplifies to
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Verify w; < w, explaining energy transfer to the electron (Compton scattering).

(c) In terms of wavelength A = 27w¢/w, derive the Compton shift:
h
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where A\, = h/mc is the Compton wavelength. Compute . for electrons and explain the Thomson limit.

(d) Consider an ultra-relativistic electron with u; — ¢, v; > 1, but iw < yymc?. Argue that the scattering is
Thomson-like in the rest frame of the electron.

Given relativistic beaming confines the scattered photon to a, ~ ;" ! ~ 0, show that
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Show that the maximum gain in the photon energy occurs for head-on collision (o = ), and is given by w; =
42w (inverse Compton scattering).

(e) For electrons with y; ~ 102 and radio photons (w ~ 1 GHz), verify the inverse Compton condition iw < ~;mc?.

For a head-on collision, compute the up-scattered frequency in Hz and identify the electromagnetic spectrum
region (e.g., optical, X-ray).

5. The quantum simple harmonic oscillator: Consider a quantum mechanical particle in an one-dimensional simple
harmonic oscillator potential V (z) = mw?x?/2.

(a) Show that the eigenvalues of the Hamiltonian H of the system cannot be negative.

(b) Show that the Hamiltonian of the system can be written as
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(c) Show thatif 1)) is an eigenstate of H with eigenvalue F, then a4 [)) too are eigenstates of H but with eigenvalues
E + hw.

(d) Argue that the ground state |1)g) of the system (i.e., the eigenstate with the lowest value of E) must satisfy
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where the operators a4 are defined as

Solve the equation to obtain the normalized ground state. What is the value of the ground state energy?

(e) Apply a successively on the ground state and show that the nth energy eigenstate is given by
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(f) Write down the time-independent Schrédinger equation for a particle moving in the potential, solve it using

appropriate boundary conditions and obtain the energy levels as well as the wave functions.



6. The hydrogen atom: Consider the hydrogen atom which has a potential

Because the Coulomb potential is spherically symmetric, the Schrédinger equation can be solved by separation of
variables in spherical coordinates. The solutions to the angular part are the spherical harmonics. Use the power series
method to solve the radial equation. Find the recursion formula for the coefficients, and determine the allowed energies
as well as the degeneracy of the bound states.

7. Time-independent perturbation theory: Consider the Hamiltonian H = Hy + €, where € < 1, and assume the
(0)

unperturbed system Hj has non-degenerate energy levels with known eigenstates |Ei(0)> and eigenvalues E
an orthonormal basis.

, forming

(a) Starting from the full eigenvalue equation
(Ho+ €Hy) |E;) = E; |Ey)

expand the eigenstate as
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and the energy as
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Substitute these into the equation and equate coefficients of powers of € to derive the equations for the zeroth-

order, first-order, and second-order terms (up to the equation for |EZ(2)>)
(b) For the first-order energy correction, take the inner product of the el equation with (EZ»(O)| and show that Ei(l) =
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(c) For the first-order wave function correction, take the inner product of the ¢! equation with <E](‘0) |, where j # 1,

and derive
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Then, expand | Ei(1)> =2.;a ]EJ(.O)> and explain how to determine the coefficients a; for j # .

8. Time-dependent perturbation theory and Fermi’s golden rule: Consider the Hamiltonian H = Hy+ e¢H; (t) with
€ < 1, where the unperturbed eigenstates | E;) and energies E; corresponding to Hy are known and orthonormal.

(a) Expand the wave function as
() =Y ilt) | By e B/,

Substitute into the time-dependent Schrédinger equation
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and derive the coupled differential equations
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where wy; = (Ef — E;)/h.



(b) Assume ¢ is small and expand
ci(t) = CZ(O) + ecgl) + -
Derive the first-order equation
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(c) For aperiodic perturbation e Hy (t) = H#"e % (with H'"" time-independent), derive the transition amplitude
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(d) Compute the transition probability P, ¢(t) = |cf(¢)|* and describe its behaviour (e.g., peak at resonance w =
Wfq, width oc 1/2).

(e) Derive the transition rate
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In the long-time limit ¢ > (wf, — w) ™!, show that the rate simplifies to
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This is known as the Fermi’s golden rule. Explain the energy conservation implied (transitions only for £y > E,).

(f) For the case eH;(t) = H"e“!, derive the analogous golden rule and discuss the transition direction (E; < E,).

9. Eigenvalues of angular momentum: Consider the fundamental commutation relations for a general angular mo-
mentum operator S:

[S:,85] = iﬁz €ijkSk,
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where S;, i = 1, 2, 3 are the Cartesian components of S, and €ijk is the Levi-Civita symbol. Let |s, m) be a simultaneous
eigenstate of 5% = S2 + Sg + 52 and S, with eigenvalues as h?s(s + 1) and m, respectively.

(a) Show that for a given s, the allowed values of m are —s, —s +1,...,+s.

(b) Also show that the quantum number s must be an integer or a half-integer.

10. Spin-1/2 particles and the Pauli matrices: Consider a spin-1/2 particle (e.g., an electron). Suppose we are working
in a basis where S, is diagonal.

(a) In the above basis, explicitly construct the matrices for S;, Sy, and S..
(b) The Pauli matrices are defined as ¢ = 25 /h. Write down the matrices 0, 0y, and 0.
(c) Prove the following identities for the Pauli matrices:
o (04,05 = 2ie45, ok,
« {0i,0;} =2 0;; 12 where 13 is the 2 x 2 identity matrix,
« 0,05 = 05 12 +1) . €ijk Ok
« (-@)(6-b) = (@-b)la +id - (@ x b), where & = 012 + 02§) + 032 and @, b are ordinary vectors.
(d) Consider the spin component S-finan arbitrary direction given by the angles (0, ¢), where 7 is the unit vector

along (0, ¢). Find the eigenstates < g ) of this spin component. What happens to the eigenstates when 6 —
0+ 2m?



11. Combining two spin-1/2 particles: Consider a system of two spin-1/2 particles (e.g., the electron and proton in a
hydrogen atom). The individual spin operators are S, and S5, and the total spin is S = S| +S5. The basis states for the
individual spins are |s1,m1) and |s2, m2). The combined system can be described in the uncoupled basis |m1;mz) =
‘81 = 1/2,m1> ’82 = 1/2,m2>.

(a) There are four uncoupled basis states |mq; ma)
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Show that these are all eigenstates of the total z-component operator S, = 51, + .52, and find their corresponding

eigenvalues.

(b) The total spin-squared operator is S? = (51 + Sg) = 5% + 52 + 25 - Sy. Show how the term 2] - Sy can be
written in terms of ladder operators S = S, 15, as 251,52, + S1452— + S1-Sa24.

(c) By operating with S? on the four uncoupled basis states, show that |++) and |——) are already eigenstates of S2.
What is the value of the total spin quantum number s for these states?

(d) Find the two linear combinations of |+—) and |—+) that are eigenstates of S?. What are their corresponding
eigenvalues and the value of s?

(e) These four resulting states, i.e., the ones found in the previous two steps, are the “triplet” and “singlet” states.

Write them down in the form |s, m).

12. Adding orbital and spin angular momentum (E + 5): Consider an electron with orbital angular momentum L
(quantum number /) and spin S (quantum number s = 1/2). The total angular momentum is J = L + S. The coupled
basis states are denoted by |j, m), while the uncoupled basis is |I, m;; s, ms).

(a) What are the possible values for the total angular momentum quantum number j for a given [ > 0?

(b) The coupled states |j, m) can be written as a linear combination of the uncoupled states using Clebsch-Gordan
coefficients. For a given m, we can write:
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Derive the Clebsch-Gordan coefficients (C; and C5) for the states with j =1+ 1/2and j =1 — 1/2.



