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• The questions in this sheet are based on courses you are expected to have completed before attending this course.

• You may look up textbooks and/or consult friends for solving the problems, but make sure you understand the solutions
and the associated physics.

• You need not submit the solutions. However, if you find any of these questions non-trivial/difficult, please revise the
corresponding chapters from relevant textbooks. In the extreme case you are unable to solve a problem, you may seek
help from the instructor.

1. Properties of Maxwell’s equations: The Maxwell’s equations are

∇⃗ · B⃗ = 0, ∇⃗ × E⃗ = −1

c

∂B⃗

∂t
,

∇⃗ · E⃗ = 4πρ, ∇⃗ × B⃗ =
1

c

∂E⃗

∂t
+

4π

c
j⃗.

(a) Show that E⃗ and B⃗ satisfy the equations

∇2E⃗ − 1

c2
∂2E⃗

∂t2
= 4π∇⃗ρ+ 4π

c2
∂j⃗

∂t
,

∇2B⃗ − 1

c2
∂2B⃗

∂t2
= −4π

c
∇⃗ × j⃗.

(b) Starting from the Maxwell’s equations, derive the Poynting’s theorem

∂

∂t

(
E2 +B2

8π

)
+ ∇⃗ ·

( c

4π
E⃗ × B⃗

)
= −j⃗ · E⃗.

Interpret all the terms of the above equation.

2. Larmor’s formula: For a point charge q moving along some arbitrary trajectory x⃗q(t), the electric and magnetic fields
are given by

E⃗(t, x⃗) =

[
q(n̂R − ˙⃗xq/c)(1− ˙⃗x2q/c

2)

(1− n̂R · ˙⃗xq/c)3R2

]
tr

+

[
qn̂R × {(n̂R − ˙⃗xq/c)× ¨⃗xq/c}

c(1− n̂R · ˙⃗xq/c)3R

]
tr

,

and
B⃗(t, x⃗) = [n̂R]tr × E⃗(t, x⃗),

whereR = |x⃗− x⃗q(tr)|, tr = t−|x⃗−x⃗q(tr)|/c is the retarded time, and n̂R is a unit vector in the direction of x⃗−x⃗q(tr).

(a) Interpret the terms in the above expressions and identify which of the terms correspond to the radiation? Isolate
those terms in the expression for the fields and write them as E⃗rad(t, x⃗) and B⃗rad(t, x⃗).
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(b) When the particles are non-relativistic ˙⃗xq ≪ c, and |x⃗| ≫ |x⃗q| (the distance to an object is much larger than its
characteristic size), show that the radiation fields reduce to

E⃗rad(t, x⃗) =
qn̂× (n̂× ¨⃗xq(t− r/c))

c2r
,

B⃗rad(t, x⃗) = n̂× E⃗rad(t, x⃗),

where r = |x⃗| and n̂ = x⃗/r.
(c) Show that the flux associated with this radiation field is given by

F⃗rad =
q2a2q

4πc3r2
sin2 θ n̂,

where a⃗q ≡ ¨⃗xq and θ is the angle between n̂ and a⃗q , i.e., between the direction of the radiation and acceleration
of the particle.

(d) Show that the total flux integrated over a surface of radius r is

Prad =
2q2a2q
3c3

.

3. Beaming of radiation: Consider a radiation source moving at velocity v along the +x-axis in the lab frame L. Let the
rest frame of the source be denoted as R. The source emits waves with the wave vector

k⃗ =
(ω
c
cos θ,

ω

c
sin θ, 0

)
where θ is the propagation angle from the x-axis and ω is the angular frequency.

θ
v

Source

(a) Derive the relativistic Doppler effect for frequency

ωL = γωR

(
1 +

v

c
cos θR

)
,

where θR is the propagation angle in the rest frame of the source and γ = 1/
√
1− v2/c2.

Simplify the expression for θR = 0 and θR = π, and explain the physical meaning.
(b) Derive the angle transformation

tan θL =
sin θR

γ(cos θR + v/c)
.

For θR = π/2, show θL ≈ γ−1 when v → c. How does this relation lead to beaming of the radiation originating
from a relativistic source?

4. Compton and inverse Compton scattering: Consider the scattering of a photon off an electron of rest mass m. The
incident photon has four-momentum moves in a direction k̂ with a frequency ω, while the scattered photon moves
along n̂ with frequency ω1. The initial electron has a velocity u⃗i. Let ψ be the angle between k̂ and n̂, αk between u⃗i
and k̂, αn between u⃗i and n̂.

(a) Using energy and momentum conservation, derive the relation between the incident and scattered frequency of
the photon

ω1 = ω
1− ui

c
cosαk

1− ui
c
cosαn +

ℏω
γimc2

(1− cosψ)

,

where γi = 1/
√

1− u2i /c
2. Discuss the limits under which the result approaches that corresponding to Thomson

scattering.
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(b) Show that, for an electron initially at rest ui = 0, the expression simplifies to

ω1 =
ω

1 + (ℏω/mc2)(1− cosψ)
.

Verify ω1 < ω, explaining energy transfer to the electron (Compton scattering).

(c) In terms of wavelength λ = 2πc/ω, derive the Compton shift:

λ1 − λ =
h

mc
(1− cosψ) = λc(1− cosψ),

where λc = h/mc is the Compton wavelength. Compute λc for electrons and explain the Thomson limit.

(d) Consider an ultra-relativistic electron with ui → c, γi ≫ 1, but ℏω ≪ γimc
2. Argue that the scattering is

Thomson-like in the rest frame of the electron.
Given relativistic beaming confines the scattered photon to αn ∼ γ−1

i ≈ 0, show that

ω1

ω
≈ 2γ2i

(
1− ui

c
cosαk

)
.

Show that the maximum gain in the photon energy occurs for head-on collision (αk = π), and is given by ω1 ≈
4γ2i ω (inverse Compton scattering).

(e) For electrons with γi ∼ 103 and radio photons (ω ∼ 1GHz), verify the inverse Compton condition ℏω ≪ γimc
2.

For a head-on collision, compute the up-scattered frequency in Hz and identify the electromagnetic spectrum
region (e.g., optical, X-ray).

5. The quantum simple harmonic oscillator: Consider a quantum mechanical particle in an one-dimensional simple
harmonic oscillator potential V (x) = mω2x2/2.

(a) Show that the eigenvalues of the Hamiltonian H of the system cannot be negative.

(b) Show that the Hamiltonian of the system can be written as

H = ℏω
(
a+a− +

1

2

)
,

where the operators a± are defined as

a± =

√
1

2ℏmω
(mωx∓ ip) .

(c) Show that if |ψ⟩ is an eigenstate ofH with eigenvalueE, then a±|ψ⟩ too are eigenstates ofH but with eigenvalues
E ± ℏω.

(d) Argue that the ground state |ψ0⟩ of the system (i.e., the eigenstate with the lowest value of E) must satisfy

a−|ψ0⟩ = 0.

Solve the equation to obtain the normalized ground state. What is the value of the ground state energy?

(e) Apply a+ successively on the ground state and show that the nth energy eigenstate is given by

|ψn⟩ =
1√
n!

(a+)
n |ψ0⟩.

(f) Write down the time-independent Schrödinger equation for a particle moving in the potential, solve it using
appropriate boundary conditions and obtain the energy levels as well as the wave functions.
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6. The hydrogen atom: Consider the hydrogen atom which has a potential

V (r) = −e
2

r
.

Because the Coulomb potential is spherically symmetric, the Schrödinger equation can be solved by separation of
variables in spherical coordinates. The solutions to the angular part are the spherical harmonics. Use the power series
method to solve the radial equation. Find the recursion formula for the coefficients, and determine the allowed energies
as well as the degeneracy of the bound states.

7. Time-independent perturbation theory: Consider the Hamiltonian H = H0 + ϵH1, where ϵ≪ 1, and assume the
unperturbed systemH0 has non-degenerate energy levels with known eigenstates |E(0)

i ⟩ and eigenvaluesE(0)
i , forming

an orthonormal basis.

(a) Starting from the full eigenvalue equation

(H0 + ϵH1) |Ei⟩ = Ei |Ei⟩ ,

expand the eigenstate as

|Ei⟩ =
∞∑
n=0

ϵn |E(n)
i ⟩ ,

and the energy as

Ei =

∞∑
n=0

ϵnE
(n)
i .

Substitute these into the equation and equate coefficients of powers of ϵ to derive the equations for the zeroth-
order, first-order, and second-order terms (up to the equation for |E(2)

i ⟩).

(b) For the first-order energy correction, take the inner product of the ϵ1 equation with ⟨E(0)
i | and show that E(1)

i =

⟨E(0)
i |H1|E(0)

i ⟩.

(c) For the first-order wave function correction, take the inner product of the ϵ1 equation with ⟨E(0)
j |, where j ̸= i,

and derive

⟨E(0)
j |E(1)

i ⟩ =
⟨E(0)

j |H1|E(0)
i ⟩

E
(0)
i − E

(0)
j

.

Then, expand |E(1)
i ⟩ =

∑
j aj |E

(0)
j ⟩ and explain how to determine the coefficients aj for j ̸= i.

8. Time-dependent perturbation theory and Fermi’s golden rule: Consider the HamiltonianH = H0+ϵH1(t) with
ϵ≪ 1, where the unperturbed eigenstates |Ei⟩ and energies Ei corresponding to H0 are known and orthonormal.

(a) Expand the wave function as
|ψ(t)⟩ =

∑
i

ci(t) |Ei⟩ e−iEit/ℏ.

Substitute into the time-dependent Schrödinger equation

iℏ
∂

∂t
|ψ(t)⟩ = H |ψ(t)⟩ ,

and derive the coupled differential equations

ċf (t) = − i

ℏ
ϵ
∑
i

ci(t) ⟨Ef |H1(t)|Ei⟩ eiωfit,

where ωfi = (Ef − Ei)/ℏ.
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(b) Assume ϵ is small and expand
ci(t) = c

(0)
i + ϵc

(1)
i + · · · .

Derive the first-order equation

ċ
(1)
f = − i

ℏ
∑
i

c
(0)
i ⟨Ef |H1|Ei⟩ eiωfit.

For a system starting in state |Ea⟩ at t = 0 (so ci(0) = δia), integrate to find for f ̸= a:

c
(1)
f (t) = − i

ℏ

∫ t

0
dt′ ⟨Ef |H1(t

′)|Ea⟩ eiωfat
′
.

(c) For a periodic perturbation ϵH1(t) = Htranse−iωt (withHtrans time-independent), derive the transition amplitude

cf (t) = − i

ℏ
⟨Ef |Htrans|Ea⟩ ei(ωfa−ω)t/2 sin[(ωfa − ω)t/2]

(ωfa − ω)/2
, f ̸= a.

(d) Compute the transition probability Pa→f (t) = |cf (t)|2 and describe its behaviour (e.g., peak at resonance ω =
ωfa, width ∝ 1/t).

(e) Derive the transition rate

Ra→f (t) =
dPa→f (t)

dt
.

In the long-time limit t≫ (ωfa − ω)−1, show that the rate simplifies to

lim
t→∞

Ra→f (t) =
2π

ℏ2
| ⟨Ef |Htrans|Ea⟩ |2 δD(ωfa − ω).

This is known as the Fermi’s golden rule. Explain the energy conservation implied (transitions only forEf > Ea).

(f) For the case ϵH1(t) = Htranseiωt, derive the analogous golden rule and discuss the transition direction (Ef < Ea).

9. Eigenvalues of angular momentum: Consider the fundamental commutation relations for a general angular mo-
mentum operator S⃗:

[Si, Sj ] = iℏ
∑
k

εijkSk,

where Si, i = 1, 2, 3 are the Cartesian components of S⃗, and εijk is the Levi-Civita symbol. Let |s,m⟩ be a simultaneous
eigenstate of S2 ≡ S2

x + S2
y + S2

z and Sz with eigenvalues as ℏ2s(s+ 1) and ℏm, respectively.

(a) Show that for a given s, the allowed values of m are −s,−s+ 1, . . . ,+s.

(b) Also show that the quantum number s must be an integer or a half-integer.

10. Spin-1/2 particles and the Pauli matrices: Consider a spin-1/2 particle (e.g., an electron). Suppose we are working
in a basis where Sz is diagonal.

(a) In the above basis, explicitly construct the matrices for Sx, Sy , and Sz .

(b) The Pauli matrices are defined as σ⃗ = 2S⃗/ℏ. Write down the matrices σx, σy , and σz .

(c) Prove the following identities for the Pauli matrices:

• [σi, σj ] = 2 i εijk σk,
• {σi, σj} = 2 δij 12 where 12 is the 2× 2 identity matrix,
• σiσj = δij 12 + i

∑
k εijk σk,

• (σ⃗ · a⃗) (σ⃗ · b⃗) = (⃗a · b⃗)12 + iσ⃗ · (⃗a× b⃗), where σ⃗ = σ1x̂+ σ2ŷ + σ3ẑ and a⃗, b⃗ are ordinary vectors.

(d) Consider the spin component S⃗ · n̂ in an arbitrary direction given by the angles (θ, ϕ), where n̂ is the unit vector

along (θ, ϕ). Find the eigenstates
(
α
β

)
of this spin component. What happens to the eigenstates when θ →

θ + 2π?

5



11. Combining two spin-1/2 particles: Consider a system of two spin-1/2 particles (e.g., the electron and proton in a
hydrogen atom). The individual spin operators are S⃗1 and S⃗2, and the total spin is S⃗ = S⃗1+ S⃗2. The basis states for the
individual spins are |s1,m1⟩ and |s2,m2⟩. The combined system can be described in the uncoupled basis |m1;m2⟩ ≡
|s1 = 1/2,m1⟩ |s2 = 1/2,m2⟩.

(a) There are four uncoupled basis states |m1;m2⟩∣∣∣∣+1

2
;+

1

2

〉
,

∣∣∣∣+1

2
;−1

2

〉
,

∣∣∣∣−1

2
;+

1

2

〉
,

∣∣∣∣−1

2
;−1

2

〉
≡ |++⟩ , |+−⟩ , |−+⟩ , |−−⟩ .

Show that these are all eigenstates of the total z-component operator Sz = S1z+S2z and find their corresponding
eigenvalues.

(b) The total spin-squared operator is S2 = (S⃗1 + S⃗2)
2 = S2

1 + S2
2 + 2S⃗1 · S⃗2. Show how the term 2S⃗1 · S⃗2 can be

written in terms of ladder operators S± ≡ Sx ± iSy as 2S1zS2z + S1+S2− + S1−S2+.

(c) By operating with S2 on the four uncoupled basis states, show that |++⟩ and |−−⟩ are already eigenstates of S2.
What is the value of the total spin quantum number s for these states?

(d) Find the two linear combinations of |+−⟩ and |−+⟩ that are eigenstates of S2. What are their corresponding
eigenvalues and the value of s?

(e) These four resulting states, i.e., the ones found in the previous two steps, are the “triplet” and “singlet” states.
Write them down in the form |s,m⟩.

12. Adding orbital and spin angular momentum (L⃗ + S⃗): Consider an electron with orbital angular momentum L⃗
(quantum number l) and spin S⃗ (quantum number s = 1/2). The total angular momentum is J⃗ = L⃗+ S⃗. The coupled
basis states are denoted by |j,m⟩, while the uncoupled basis is |l,ml; s,ms⟩.

(a) What are the possible values for the total angular momentum quantum number j for a given l > 0?

(b) The coupled states |j,m⟩ can be written as a linear combination of the uncoupled states using Clebsch-Gordan
coefficients. For a given m, we can write:

|j,m⟩ = C1

∣∣∣∣l,m− 1

2
;
1

2
,
1

2

〉
+ C2

∣∣∣∣l,m+
1

2
;
1

2
,−1

2

〉
.

Derive the Clebsch-Gordan coefficients (C1 and C2) for the states with j = l + 1/2 and j = l − 1/2.
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