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Cosmology using galaxy surveys

▶ Measuring the location, redshift and other properties (e.g., luminosity, colour, spectral composition) of galaxies is an
important task in cosmology. These are done using galaxy redshift surveys.

▶ The large-scale distribution allows one to measure the shape of the power spectrum (e.g., power-law slope and
turnover, BAO features) and hence constrain cosmological parameters.

Courtesy ESA and Planck Collaboration

▶ A set of galaxy surveys rely on gravitational lensing of light. These are useful to study the distribution of dark
matter between the lensed galaxy and us.
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Galaxy formation: cooling

▶ The galaxies would form when baryons are attracted within the collapsed dark matter halo. Hence the locations of
galaxies would correspond to the high density regions of the dark matter field.

▶ The gas, when attracted into the dark matter potential well, acquires kinetic energy and thus gets heated up. The
typical temperature of the gas (assuming it to be hydrogen) would be

Tvir ∼
GMmp

kBRvir
.

This temperature is ∼ 104 K for 108M⊙ dark matter haloes, and is smaller for lighter haloes.
▶ The overdensity ∼ 200 is not sufficient to trigger nuclear reactions, hence one needs to condense the gas further for

stars to form.
▶ The condensation is possible only if the pressure of the gas can be reduced, i.e., one needs to cool the gas.
▶ In case the gas is made of atomic hydrogen, the only way to dissipate energy is via atomic transitions which is

possible only for Tvir > 104 K. If the as is cooler, the atoms simply remain in the ground state.
▶ The process of cooling and condensation will be determined by the Jeans criterion.
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Jeans criterion for collapse
▶ A spherically symmetric gas cloud evolves as

d2r
dt2

= −Gm(r)
r2

− 1

ρ

dP(r)
dr

.

▶ The cloud will expand (collapse) if the second (first) term on the right dominates.
▶ The pressure term dominates in a characteristic time-scale ts ∼ R/cs, where cs is the sound speed. The scaling, in

terms of the temperature, is given by

ts ∼
R
√
ρ

√
P

∼ R(µmp)
1/2

(kB T)1/2
∼ M1/3ρ−1/3(µmp)

1/2(kBT)
−1/2

▶ The gravity term dominates at a time-scale (known as the free-fall time) tff ∼ (Gρ)−1/2.
▶ Clouds with tff < ts will collapse under self-gravity. This implies that the condition for collapse is

(Gρ)−1/2 < M1/3ρ−1/3(µmp)
1/2(kBT)

−1/2 =⇒ M > ρ−1/2

(
kBT
Gµmp

)3/2

.

▶ Clouds with masses above some threshold value M > MJ will collapse under self-gravity. This phenomenon is known
as Jeans instability and the threshold mass MJ is called Jeans mass. Its actual expression is

MJ =

(
3

4πρ

)1/2 (
5kBT
Gµmp

)3/2

.

For interstellar medium, it turns out to be MJ ∼ 105M⊙.
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Fragmentation
▶ Now, as the cloud collapses, its density increases. Whether the Jeans mass (MJ ∝ ρ−1/2T3/2) decreases

will depend on how the temperature changes.
▶ According to the virial theorem, kinetic (thermal) and potential (gravitational) energies are related ET = |EG|/2.
▶ Now, as the cloud collapses, its gravitational energy |EG| ∝ M2/R increases. Hence, if virial theorem holds (which is

true if the star is in quasi-hydrostatic equilibrium which, in turn, holds if the mass of the cloud is not too large than
the Jeans mass), then ET also increases.

▶ An increase in ET will result in enhanced excitations of atoms/molecules, which will de-excite and hence produce
radiation. This radiation can be trapped within the system (optically thick) or can escape away (optically thin).

▶ In early parts of collapse, the density of the cloud is small enough so that it is optically thin. The system will hence
re-adjust itself by radiating away the excess energy and the temperature may either remain constant (isothermal) or
decrease (cooling). For proto-stellar collapse, it is usually isothermal.

▶ In that case, the Jeans mass decreases. This will lead to formation of smaller clouds, which is called fragmentation.
▶ This process cannot continue forever. Since ρ increases, the cloud will become optically thick at some point. At this

stage, the energy cannot escape the cloud and hence it evolves adiabatically P ∝ V−γ ∝ ργ =⇒ T ∝ P/ρ ∝ ργ−1.
▶ For an ideal, mono-atomic gas, we have γ = 5/3, so T ∝ ρ2/3. Then MJ ∝ ρ−1/2T3/2 ∝ ρ1/2. This means that the

Jeans mass starts increasing. At this point, the collapse halts.
▶ It is possible to estimate the Jeans mass at the moment when the gas cloud makes a transition to adiabatic evolution.

This will be the smallest mass scale that can form because of fragmentation. It can be shown to be ∼ M⊙.
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Galaxy luminosity function
▶ One can study the models of galaxy formation using the galaxy luminosity function Φ(L) dL, defined as

the number of galaxies per unit volume in the luminosity range (L, L+ dL).
▶ It can also be expressed in terms of the absolute magnitude M = −2.5 log10(L/L1).

Montero-Dorta & Prada (2009)
SDSS DR6

M0.1r⊙ ≈ 4.76

▶ Schechter fit to the data: Φ(L) =
Φ∗

L∗

(
L
L∗

)α

e−L/L∗ , or

Φ(M) = 0.4 ln(10) Φ∗ 10−0.4(M−M∗)(α+1) exp
[
−10−0.4(M−M∗)

]
.
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Relating the halo mass function to the galaxy luminosity function

▶ As we have discussed, galaxies form inside dark matter
haloes. Hence the galaxy numbers must be related to
the halo numbers.

▶ Consider a simple scenario where
– each halo forms one galaxy,
– the luminosity of the galaxy is proportional to the halo mass

▶ In that case, we write Lr = ζ Mh, and then compute
Φ(L) from the theoretical n(Mh) ≡ dn/dMh. We treat ζ
as a free parameter which is tuned to find a good match
to the data.

▶ We need the bright galaxies to be fainter, and also the
faint galaxies to be fainter.

▶ More detailed models of galaxy formation too suffer
from this difficulty.
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Abundance matching
▶ Suppose instead we leave the Lr −Mh relation free (except that it must be monotonic). We find the relation

that will allow perfect match with the data. This is done through the implicit relation∫ ∞

Lr

dL′ Φ(L′) =
∫ ∞

Mh

dM′ n(M′).

▶ This technique is called the abundance matching.
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▶ Clearly, the low-mass haloes and the high-mass haloes form stars inefficiently. These are because of
radiative/reionization feedback and supernova feedback in low-mass haloes, and AGN feedback in high-mass
haloes.
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Galaxies as high density regions

▶ Let us now study the clustering properties of the high-density regions which are potential sites of galaxies. In terms
of linear density contrast, such regions would correspond to δ ≳ δc.

▶ Suppose one measures the clustering properties of galaxies, then one can ask how is it related to the dark matter
power spectrum.

▶ Let there be two points with linearly extrapolated density contrasts δ1 ≡ δ(⃗x1), δ2 ≡ δ(⃗x2).
▶ The joint probability of the first point having a δ between (δ1, δ1 + dδ1) and the second between (δ2, δ2 + dδ2) is

P(δ1, δ2) =
1

2πσ2
√

1− ρ2
exp

[
− 1

2σ2(1− ρ2)

(
δ21 + δ22 − 2ρδ1δ2

)]
,

where

ρ =
ξ(r)
σ2

.
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Probability of high density regions

▶ Since we are interested in high density regions, let us compute the probability that both δ1 and δ2 are above some
threshold value νσ. This is given by

P2(δ1 > νσ, δ2 > νσ) =

∫ ∞

νσ

dδ1

∫ ∞

νσ

dδ2P(δ1, δ2)

=
1

2πσ2
√

1− ρ2

∫ ∞

νσ

dδ1

∫ ∞

νσ

dδ2 exp
[
− 1

2σ2(1− ρ2)

(
δ21 + δ22 − 2ρδ1δ2

)]
.

▶ In order to simplify the problem, let us assume ρ ≪ 1, i.e., thr clustering is weak. Then we can write the exponent as

− 1

2σ2(1− ρ2)

(
δ21 + δ22 − 2ρδ1δ2

)
≈ − 1

2σ2
[δ21 + (δ2 − ρδ1)

2 − ρ2δ21 ] ≈ − 1

2σ2
[δ21 + (δ2 − ρδ1)

2].

▶ Then the probability becomes

P2(δ1 > νσ, δ2 > νσ) ≈ 1

2πσ2

∫ ∞

νσ

dδ1 e−δ21/2σ
2
∫ ∞

νσ

dδ2 exp
[
− (δ2 − ρδ1)

2

2σ2

]
=

1

2πσ

√
π

2

∫ ∞

νσ

dδ1 e−δ21/2σ
2
[
1 + erf

(
δ1ρ− νσ

σ
√
2

)]
.
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Correlation of high density regions

▶ If we further assume ν ≫ 1 (i.e., the regions have extremely high densities compared to the variance) and use the
asymptotic approximation erf(x) → −1− exp(−x2)/

√
πx, then

P2(δ1 > νσ, δ2 > νσ) ≈ 1

2πσ

√
π

2

∫ ∞

νσ

dδ1 e−δ21/2σ
2
[
exp

(
− (δ1ρ− νσ)2

2σ2

) √
2√
πν

]
≈ 1

2πν2
e−ν2

eν
2ρ.

▶ The probability of one point to be above the threshold is

P1(δ > νσ) =
1

σ
√
2π

∫ ∞

νσ

dδ e−δ2/2σ2

≈ 1√
2π ν

e−ν2/2.

▶ So, the correlation of high density regions is given by

P2

P2
1

− 1 ≡ ξν(r) = eρν
2

− 1 = exp
[
ν2

σ2
ξ(r)

]
− 1
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Bias of high density regions

▶ If ρν2 ≪ 1, then

ξν(r) ≈ ρν2 =
ν2

σ2
ξ(r).

For ν > σ (which corresponds to the density contrasts being larger than σ2), we get ξν > ξ, showing that sufficiently
high density regions are more clustered.

▶ One can thus write the correlation of high density regions as

ξν(r) = b2ν ξ(r),

where bν is called the bias.
▶ Thus galaxies (and other tracers of the matter distribution) are biased with respect to the underlying dark matter

distribution.
▶ A similar relation holds for the power spectrum Pν(k) as well.
▶ In general, the bias depends on the nature of the tracers under consideration. It is usually scale-independent at

sufficiently large scales, but can be quite complicated at smaller scales.
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Detailed calculation of the bias
▶ The bias can be calculated more rigorously using the mass functions.
▶ Analogous to the correlation function of matter

ξmm(⃗x1 − x⃗2) = ⟨δm(⃗x1) δm(⃗x2)⟩, δm(⃗x) =
ρm(⃗x1)
ρ̄m

− 1,

we can write for haloes

ξhh(⃗x1 − x⃗2|M1,M2) = ⟨δh(⃗x1,M1) δh(⃗x2,M2)⟩, δh(⃗x,M) =
nM(⃗x)
n̄M

− 1.

Note that n̄M is the globally averaged mass function given by the standard form (e.g., Press-Schechter), while nM(⃗x) is
the mass function at a point x⃗.

▶ It can be shown that to the linear order

δh(⃗x,M) =
ν2 − 1

δc
δm(⃗x), ν ≡ δc(z)

σ(M)
.

▶ It is customary to define the linear halo bias through the relation δh(⃗x,M) = b(M) δm(⃗x).
▶ Note that the value of ν is higher for larger M. Hence the bias will be higher for larger mass (i.e., rarer) haloes.
▶ Hence we can write

ξhh(⃗x1 − x⃗2|M1,M2) = b(M1) b(M2) ξmm(⃗x1 − x⃗2).

The full correlation function can be calculated by integrating over the mass function.
▶ A similar relation exists for the power spectrum as well.
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Results from simulations

DM
Galaxy
Dark Halo

Yoshikawa et al (2001)
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Results from observations (SDSS)

▶ Projected correlation function wp(rp) = 2

∫ ∞

0

dr∥ ξ(⃗x) = 2

∫ ∞

0

dr∥ ξ(r∥, rp)

Zehavi et al (2005)
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