Cosmology

Lecture 19
Halo mass function

Tirthankar Roy Choudhury
National Centre for Radio Astrophysics
Tata Institute of Fundamental Research

Formation of haloes

- The formation of collapsed objects is crucial for forming galaxies. The first task is to obtain the mass distribution of haloes (i.e., the halo mass function) in the universe for a cosmic density field.
- The full problem is non-linear and cannot be done analytically. However, there is an extremely interesting theoretical model which captures the basics of the formation of haloes.
- We have already seen that, in the spherical approximation, a region collapses and forms a virialized object when the linear density contrast within the region exceeds $\delta_{c} \approx 1.69$.
- Now, suppose we are given the initial density field, i.e., the linear density contrast $\delta\left(z_{\text {in }}, \vec{x}\right)$. We know that it will grow as $D(z)$ in the linear theory.
- Writing $\delta(z, \vec{x})=D(z) \delta(\vec{x})$, where $\delta(\vec{x})$ is the linearly extrapolated field at $z=0$, we understand that a region of comoving radius X will collapse when

$$
\delta_{X}(z, \vec{x}) \geq \delta_{c} \quad \Longrightarrow \quad \delta_{X}(\vec{x}) \geq \frac{\delta_{c}}{D(z)} \equiv \delta_{c}(z)
$$

Identification of haloes in the linear field

Identify all possible spherical regions which have $\delta_{X}(\vec{x}) \geq \delta_{c}(z)$. An extremely cumbersome method!

TRC, Haehnelt \& Regan (2009)

Sampling the random field

- One can obtain the halo mass function analytically using what is called the excursion set formalism.
- Consider the linear density field and let us concentrate on a given point \vec{x}.
- Now we smooth the field using a spherical window of radius X. Let us start with a large radius $X \rightarrow \infty$ and compute $\delta_{X}(\vec{x})$. If X is large enough, we expect $\delta_{X} \rightarrow 0$.
- Next we take a smaller radius and compute $\delta_{X}(\vec{x})$.
- We continue this process with smaller and smaller X.
- The smoothed quantity δ_{X} seems to be carrying out a "random walk" as a function of smoothing radius X.

Defining the random walk

- The problem can be mapped to a random walk if we make certain modifications to the earlier discussion.
- Let us choose the variable corresponding to random walk steps as $s \equiv \sigma^{2}(X)=\sigma^{2}(\mathcal{M})$ (where $\mathcal{M}=4 \pi X^{3} \bar{\rho}_{0} / 3$) instead of X.
- Note that s is a monotonically decreasing function of X and M. Also $s \rightarrow 0$ as $X \rightarrow \infty$. Thus all trajectories in the $\delta_{X}-s$ space start from the origin.

- Each location \vec{x} in the density field $\delta(\vec{x})$ corresponds to a trajectory $\delta_{X}(s)$, which reflects the value of the density field at that location when smoothed with a filter of radius $X(s)$.

Recap of random walk

- Let x_{1}, \ldots, x_{N} be random variables which can take values ± 1 with probabilities

$$
\mathcal{P}\left(x_{i}=1\right)=\mathcal{P}\left(x_{i}=-1\right)=\frac{1}{2}
$$

The x_{i} can be thought of as the distance travelled in a step by a random walker.

- Let $D_{N}=\sum_{i}^{N} x_{i}$ be the distance after N steps, which itself is a random variable. Then its expectation is

$$
\left\langle D_{N}\right\rangle=\sum_{i=1}^{N}\left\langle x_{i}\right\rangle=\sum_{i}^{N}\left[\mathcal{P}\left(x_{i}=1\right) \times(+1)+\mathcal{P}\left(x_{i}=-1\right) \times(-1)\right]=0
$$

The symmetry of the probability ensures that the average distance travelled by an ensemble of walkers is zero.

- The variance is given by $\left\langle D_{N}^{2}\right\rangle=\sum_{i, j=1}^{N}\left\langle x_{i} x_{j}\right\rangle$. If the variables (steps) are uncorrelated, then $\left\langle x_{i} x_{j}\right\rangle=0$ when $i \neq j$. In that case

$$
\left\langle D_{N}^{2}\right\rangle=\sum_{i=1}^{N}\left\langle x_{i}^{2}\right\rangle=N
$$

Filtered density field

- We write the density field smoothed over some length X as $\delta_{X}(\vec{x})=\int \mathrm{d}^{3} y \delta(\vec{y}) W_{X}(|\vec{y}-\vec{x}|)$.
- In Fourier space, we can write this as $\delta_{x}(\vec{x})=\int \frac{\mathrm{d}^{3} k}{(2 \pi)^{3}} \mathrm{e}^{i \vec{k} \cdot \vec{x}} \delta(\vec{k}) W_{x}^{*}(k)$.
- Now, the correlation across different filter scales is given by

$$
\left\langle\delta_{X_{1}}(\vec{x}) \delta_{X_{2}}(\vec{x})\right\rangle=\int \frac{\mathrm{d}^{3} k}{(2 \pi)^{3}} \frac{\mathrm{~d}^{3} k^{\prime}}{(2 \pi)^{2}} \mathrm{e}^{i \vec{k} \cdot \vec{x}} \mathrm{e}^{-i \vec{k}^{\prime} \cdot \vec{x}}\left\langle\delta(\vec{k}) \delta^{*}\left(\overrightarrow{k^{\prime}}\right)\right\rangle W_{X_{1}}^{*}(k) W_{X_{2}}\left(k^{\prime}\right)=\int_{0}^{\infty} \frac{\mathrm{d} k}{k} \Delta^{2}(k) W_{X_{1}}^{*}(k) W_{X_{2}}(k) .
$$

- A special case is

$$
\left\langle\delta_{X}^{2}(\vec{x})\right\rangle=\int_{0}^{\infty} \frac{\mathrm{d} k}{k} \Delta^{2}(k) W_{X}^{*}(k) W_{X}(k) \equiv \sigma^{2}(X) \equiv s(X) .
$$

- Given the above relations, we can make the following correspondence with the random walk problem

$$
\begin{array}{rr}
\text { Random variable: } & x_{i} \Longleftrightarrow \delta \\
\text { Distance: } & D_{N} \Longleftrightarrow \delta_{X} \\
\text { Expectation: } & \left\langle D_{N}\right\rangle=0 \Longleftrightarrow\left\langle\delta_{X}\right\rangle=0 \\
\text { Variance: } & \left\langle D_{N}^{2}\right\rangle=N \Longleftrightarrow\left\langle\delta_{X}^{2}\right\rangle=s
\end{array}
$$

Thus $s \equiv \sigma^{2}$ should play the role of number of steps.

- Note that X, M and s all can be used for measuring the smoothing scale. Hence we will use the notation

$$
\delta_{X} \equiv \delta_{s} .
$$

Correlation between steps

- We still need to show that different steps are uncorrelated for the random walk correspondence to work.
- One can show that this is possible if we use the sharp- k filter

$$
W_{X}(k)=\theta\left(\frac{1}{x}-k\right)
$$

- The corresponding filter in real space is

$$
W_{X}(r)=\frac{\sin (r / X)-(r / X) \cos (r / X)}{2 \pi^{2} r^{3}}
$$

Barrier crossing

- We have seen that the condition for collapse at redshift z is

$$
\delta(\vec{x}) \geq \frac{\delta_{c}}{D(z)} \equiv \delta_{c}(z)
$$

Thus $\delta_{c}(z)$ acts like a "barrier" which the random walks must cross for forming haloes.

- The condition for halo formation will be given by the random walks upcrossing the barrier for the first time.
- Any subsequent upcrossings would correspond to larger s, i.e., smaller length scales which would simply be structures within the large halo.
- One can see that early redshift implies higher barrier. So statistically the random walks have to travel more at high redshifts to cross the barrier.
- This implies that the haloes which collapse at early times will have larger values of s and hence smaller values of \mathcal{M}. Thus small-mass haloes form first. This is known as hierarchical structure formation.

Mass function of haloes

- Let a random walk upcross the barrier $\delta_{0}=\delta_{c} / D(z)$ at s_{0} for the first time. Then it is expected to form a collapsed object of mass corresponding to the s_{0} at a redshift corresponding to $D(z)=\delta_{c} / \delta_{0}$.
- Let $f_{\mathrm{FC}}(\delta, s) \mathrm{d} s$ denote the fraction of random walks which first upcross the barrier δ at a point between $(s, s+\mathrm{d} s)$.
- If $\delta=\delta_{c}(z)$, this will be equal to the fraction of points $f(M, z) \mathrm{d} M$ which will collapse to objects with mass $(\mathcal{M}, \mathcal{M}+\mathrm{d} \mathcal{M})$ at redshift z.
- In the initial field, each of these points has a comoving volume $\mathcal{M}\left(1+\delta_{i}\right) / \bar{\rho}_{0} \approx \mathcal{M} / \bar{\rho}_{0}$. So for a large comoving volume V_{∞}, the total number of points is $V_{\infty} \bar{\rho}_{0} / M$.
- Hence

$$
f_{\mathrm{FC}}\left(\delta_{c}(z), s\right) \mathrm{d} s=f(\mathcal{M}, z) \mathrm{d} \mathcal{M}=\frac{1}{\bar{\rho}_{0}} \frac{\mathcal{M}}{V_{\infty}} N(\mathcal{M}, z) \mathrm{d} \mathcal{M}=\frac{\mathcal{M}}{\bar{\rho}_{0}} n(\mathcal{M}, z) \mathrm{d} \mathcal{M}
$$

or,

$$
n(\mathcal{M}, z)=\frac{\bar{\rho}_{0}}{\mathcal{M}} f_{\mathrm{FC}}\left(\delta_{c}(z), s\right)\left|\frac{\mathrm{d} s}{\mathrm{~d} \mathcal{M}}\right|
$$

- This is the number of haloes per unit comoving volume per unit mass range, and is known as the halo mass function.

Distribution of first crossing: I

- To obtain $f_{\mathrm{FC}}(\delta, s)$, let us first consider the fraction of trajectories $\mathcal{P}\left(\delta_{0}, s_{0}\right) \mathrm{d} \delta_{0}$ which have value between $\left(\delta_{0}, \delta_{0}+\mathrm{d} \delta_{0}\right)$ at $s=s_{0}$. The gaussianity of the linear density field implies

$$
\mathcal{P}\left(\delta_{0}, s_{0}\right)=\frac{1}{\sqrt{2 \pi s_{0}}} \mathrm{e}^{-\delta_{0}^{2} / 2 s_{0}}
$$

- All of these trajectories must have first upcrossed the point $\delta=\delta_{1}<\delta_{0}$ at some $s=s_{1}<s_{0}$.
- As per our definition, the fraction of points which first upcross δ_{1} between $\left(s_{1}, s_{1}+\mathrm{d} s_{1}\right)$ is given by $f_{\mathrm{FC}}\left(\delta_{1}, s_{1}\right) \mathrm{d} s_{1}$.
- Out of these, let a fraction $\mathcal{P}\left(\delta_{0}, s_{0} \mid \delta_{1}, s_{1}, \mathrm{FC}\right) \mathrm{d} \delta_{0}$ have value between $\left(\delta_{0}, \delta_{0}+\mathrm{d} \delta_{0}\right)$ at s_{0}.
- Hence, the fraction of points which first upcrossed δ_{1} between $\left(s_{1}, s_{1}+\mathrm{d} s_{1}\right)$ and have value between $\left(\delta_{0}, \delta_{0}+\mathrm{d} \delta_{0}\right)$ at s_{0} is

$$
f_{\mathrm{FC}}\left(\delta_{1}, s_{1}\right) \mathrm{d} s_{1} \times \mathcal{P}\left(\delta_{0}, s_{0} \mid \delta_{1}, s_{1}, \mathrm{FC}\right) \mathrm{d} \delta_{0}
$$

Distribution of first crossing: II

- The fraction of points which have value between $\left(\delta_{0}, \delta_{0}+\mathrm{d} \delta_{0}\right)$ at s_{0} (irrespective of where they first upcrossed δ_{1}) is obtained by integrating the quantity over s_{1}, i.e.,

$$
\mathcal{P}\left(\delta_{0}, s_{0}\right) \mathrm{d} \delta_{0}=\int_{0}^{s_{0}} \mathrm{~d} s_{1} f_{\mathrm{FC}}\left(\delta_{1}, s_{1}\right) \mathcal{P}\left(\delta_{0}, s_{0} \mid \delta_{1}, s_{1}, \mathrm{FC}\right) \mathrm{d} \delta_{0}
$$

- Now, the trajectories which first upcross δ_{1} at s_{1} can be thought of starting a new random walk from (δ_{1}, s_{1}) (instead of $(0,0)$). This follows from the fact that subsequent steps are uncorrelated with the previous ones.
- Then

$$
\begin{aligned}
\mathcal{P}\left(\delta_{0}, s_{0} \mid \delta_{1}, s_{1}, \mathrm{FC}\right) \mathrm{d} \delta_{0} & =\mathcal{P}\left(\delta_{0}-\delta_{1}, s_{0}-s_{1}\right) \mathrm{d} \delta_{0} \\
& =\frac{1}{\sqrt{s_{0}-s_{1}} \sqrt{2 \pi}} \mathrm{e}^{-\left(\delta_{0}-\delta_{1}\right)^{2} / 2\left(s_{0}-s_{1}\right)}
\end{aligned}
$$

Distribution of first crossing: III

- So, we know $\mathcal{P}\left(\delta_{0}, s_{0}\right)$ and $\mathcal{P}\left(\delta_{0}, s_{0} \mid \delta_{1}, s_{1}, \mathrm{FC}\right)$ and we want to determine $f_{\mathrm{FC}}\left(\delta_{1}, s_{1}\right)$.
- To do this, let us integrate over δ_{0} :

$$
\begin{aligned}
\int_{\delta_{1}}^{\infty} \mathrm{d} \delta_{0} \mathcal{P}\left(\delta_{0}, s_{0}\right) & =\int_{0}^{s_{0}} \mathrm{~d} s_{1} f_{\mathrm{FC}}\left(\delta_{1}, s_{1}\right) \int_{\delta_{1}}^{\infty} \mathrm{d} \delta_{0} \mathcal{P}\left(\delta_{0}, s_{0} \mid \delta_{1}, s_{1}, \mathrm{FC}\right) \\
\frac{1}{\sqrt{2 \pi s_{0}}} \int_{\delta_{1}}^{\infty} \mathrm{d} \delta_{0} \mathrm{e}^{-\delta_{0}^{2} / 2 s_{0}} & =\frac{1}{\sqrt{s_{0}-s_{1}} \sqrt{2 \pi}} \int_{0}^{s_{0}} \mathrm{~d} s_{1} f_{\mathrm{FC}}\left(\delta_{1}, s_{1}\right) \int_{\delta_{1}}^{\infty} \mathrm{d} \delta_{0} \mathrm{e}^{-\left(\delta_{0}-\delta_{1}\right)^{2} / 2\left(s_{0}-s_{1}\right)} \\
\frac{1}{2} \operatorname{erfc}\left(\frac{\delta_{1}}{\sqrt{2 s_{0}}}\right) & =\frac{1}{\sqrt{s_{0}-s_{1}} \sqrt{2 \pi}} \int_{0}^{s_{0}} \mathrm{~d} s_{1} f_{\mathrm{FC}}\left(\delta_{1}, s_{1}\right) \int_{0}^{\infty} \mathrm{d} \bar{\delta}_{0} \mathrm{e}^{-\bar{\delta}_{0}^{2} / 2\left(s_{0}-s_{1}\right)} \\
& =\int_{0}^{s_{0}} \mathrm{~d} s_{1} f_{\mathrm{FC}}\left(\delta_{1}, s_{1}\right) \times \frac{1}{2}
\end{aligned}
$$

- So,

$$
\int_{0}^{s_{0}} \mathrm{~d} s_{1} f_{\mathrm{FC}}\left(\delta_{1}, s_{1}\right)=\operatorname{erfc}\left(\frac{\delta_{1}}{\sqrt{2 s_{0}}}\right)
$$

- This can be differentiated to show that

$$
f_{\mathrm{FC}}\left(\delta_{1}, s_{0}\right)=\frac{\delta_{1}}{\sqrt{2 \pi s_{0}^{3}}} \mathrm{e}^{-\delta_{1}^{2} / 2 s_{0}}
$$

The Press-Schechter halo mass function

- Then

$$
\begin{aligned}
n(\mathcal{M}, z) & =\frac{\bar{\rho}_{0}}{M} f_{\mathrm{FC}}\left(\delta_{c}(z), s\right)\left|\frac{\mathrm{d} s}{\mathrm{~d} M}\right| \\
& =\frac{\bar{\rho}_{0}}{M}\left|\frac{\mathrm{~d} s}{\mathrm{~d} M}\right| \times \frac{\delta_{c}(z)}{\sqrt{2 \pi s^{3}}} \mathrm{e}^{-\delta_{c}^{2}(z) / 2 s} \\
& =\frac{1}{\sqrt{2 \pi}} \frac{\bar{\rho}_{0}}{M} \frac{\delta_{c}(z)}{s^{3 / 2}}\left|\frac{\mathrm{~d} s}{\mathrm{~d} M}\right| \mathrm{e}^{-\delta_{c}^{2}(z) / 2 s} .
\end{aligned}
$$

This is known as the Press-Schechter mass function.

- One can improve the model by incorporating collapse of ellipsoids. This leads to an improvement to the match with simulations, and the mass function is known as the Sheth-Tormen mass function.

Comparison with simulations

$$
z=7.0
$$

