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Formation of haloes g}
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» The formation of collapsed objects is crucial for forming galaxies. The first task is to obtain the mass distribution of
haloes (i.e., the halo mass function) in the universe for a cosmic density field.

» The full problem is non-linear and cannot be done analytically. However, there is an extremely interesting theoretical
model which captures the basics of the formation of haloes.

P> We have already seen that, in the spherical approximation, a region collapses and forms a virialized object when the
linear density contrast within the region exceeds 6. ~ 1.69.

» Now, suppose we are given the initial density field, i.e., the linear density contrast §(zn, X). We know that it will grow
as D(z) in the linear theory.

» Writing §(z, X) = D(z) 6(X), where §(X) is the linearly extrapolated field at z = 0, we understand that a region of
comoving radius X will collapse when

(5)((2, )?) >0 — (5)((7() >



Identification of haloes in the linear field

Identify all possible spherical regions which have §x(X) > d.(z). An extremely cumbersome method!
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| | |
N | | \ » One can obtain the halo mass function analytically using what is
6(%) IMNA-A---4f-+--- 1\ called the excursion set formalism.
| | |
|

» Consider the linear density field and let us concentrate on a given

Sampling the random field

2 point X.
» Now we smooth the field using a spherical window of radius X. Let
us start with a large radius X — oo and compute dx(X). If Xis large
enough, we expect dx — 0.
Sx < 2 3 » Next we take a smaller radius and compute dx(X).

v

We continue this process with smaller and smaller X.

» The smoothed quantity dx seems to be carrying out a “random
X — 0o X—0 walk” as a function of smoothing radius X.
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Defining the random walk N

» The problem can be mapped to a random walk if we make certain modifications to the earlier discussion.

» Let us choose the variable corresponding to random walk steps as s = 0%(X) = o>(M) (where M = 47X* 5o /3)
instead of X.

» Note that s is a monotonically decreasing function of Xand M. Also s — 0 as X — oo. Thus all trajectories in the
0x — s space start from the origin.

5XT N

s=0 s — o0

» Each location X in the density field §(X) corresponds to a trajectory dx(s), which reflects the value of the density field
at that location when smoothed with a filter of radius X(s).



Recap of random walk
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» Let x1, ..., xy be random variables which can take values =1 with probabilities

The x; can be thought of as the distance travelled in a step by a random walker.

N
» Let Dy = Zx,- be the distance after N steps, which itself is a random variable. Then its expectation is

i

N N

(Dy) = (xi)=> [P(xi=1) x (+1) + P(xi = —1) x (-1)] = 0.

i=1 i

The symmetry of the probability ensures that the average distance travelled by an ensemble of walkers is zero.
N
» The variance is given by (D}) = Z (xixj). If the variables (steps) are uncorrelated, then (x;x;) = 0 when i # j. In
ij=1
that case

(D) = 3 6) = N
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Filtered density field N
» We write the density field smoothed over some length X as dx(X) = /dgy S(y)Wx(ly — ). e

3 T -
» In Fourier space, we can write this as dx(X) = / %e'“ 5(k) Wx(k).
T

Now, the correlation across different filter scales is given by

(G0 D0, () = [ S AK x5 50050 (8)) W, (o Was (k) = [ SR A2 (0 Wiy (0 W ().
(2m)3 (2m) o k

» A special case is

(62(%)) = / T kN2 g Wi Wa() = 02(X) = s(X).

k
» Given the above relations, we can make the following correspondence with the random walk problem
Random variable: X <= 0
Distance: Dy <> dx
Expectation: (Dy)y =0 <= (6x) =0
Variance: (Df,) = N<= (5)2() =s

Thus s = o should play the role of number of steps.
» Note that X, M and s all can be used for measuring the smoothing scale. Hence we will use the notation

5)( = 65.



Correlation between steps

> We still need to show that different steps are uncorrelated for the random walk correspondence to work.

» One can show that this is possible if we use the sharp-k filter

Wi(k) = 0 ()%—k).

sin(r/X) — (r/X) cos(r/X)
223 '

» The corresponding filter in real space is

Wx(r) =
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Barrier crossing

P> We have seen that the condition for collapse at redshift zis NeRA+TIFR
dc
0(x) > = oc(2).
(> 55 =4
Thus d.(2) acts like a “barrier” which the random walks must cross for forming haloes.
(5c<zhigh)
5C(Z|OW)

» The condition for halo formation will be given by the random walks upcrossing the barrier for the first time.

» Any subsequent upcrossings would correspond to larger s, i.e., smaller length scales which would simply be structures
within the large halo.

P One can see that early redshift implies higher barrier. So statistically the random walks have to travel more at high
redshifts to cross the barrier.

» This implies that the haloes which collapse at early times will have larger values of s and hence smaller values of M.
Thus small-mass haloes form first. This is known as hierarchical structure formation.



Mass function of haloes
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Let a random walk upcross the barrier 69 = d./D(z) at s for the first time. Then it is expected to form a collapsed
object of mass corresponding to the so at a redshift corresponding to D(z) = d./do.

Let frc (9, s)ds denote the fraction of random walks which first upcross the barrier § at a point between (s, s + ds).

If 6 = d.(2), this will be equal to the fraction of points f{M, z)dM which will collapse to objects with mass
(M, M+ dM) at redshift z

In the initial field, each of these points has a comoving volume M(1 + d;)/po = M/ po. So for a large comoving
volume Vo, the total number of points is Vi o /M.

Hence
Src(8c(2), s)ds = fiM, z2)dM = éﬂ NM, z)dM = g n(M, z)dM,
£o Voo Po
or,
D d
n(M,2) = B2 fre(0(2).9) | 70

This is the number of haloes per unit comoving volume per unit mass range, and is known as the halo mass
function.



Distribution of first crossing: |
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» To obtain frc (9, s), let us first consider the fraction of
trajectories P(do, so)ddo which have value between
(60,00 + ddo) at s = so. The gaussianity of the linear density
field implies

1 _s2m
P(‘SOaSO):\/ﬁe 50/20.

» All of these trajectories must have first upcrossed the point
0 = 01 < 0p at some s = s1 < sp.

» As per our definition, the fraction of points which first upcross
01 between (s1, 51 + ds1) is given by frc(d1, s1)dsq.

» Out of these, let a fraction P(do, so|d1, s1, FC) ddo have value
between (o, do + ddo) at so.

» Hence, the fraction of points which first upcrossed 1 between
(s1,s1 + ds1) and have value between (¢, do + ddo) at so is

ﬁrc((sl7 51)d51 X 73(60, 50‘61, S1, FC)dSo.
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Distribution of first crossing: Il

The fraction of points which have value between (0o, do 4+ ddo) at so (irrespective of where they first upcrossed 1) is

obtained by integrating the quantity over s1, i.e.,

S0
7)(5(), 50)d50 = / d51 ch (51, 51)73(50, S()|(§17 s1, FC)d50.
0

Now, the trajectories which first upcross 1 at s1 can be thought of starting a new random walk from (1, s1) (instead

>
of (0, 0)). This follows from the fact that subsequent steps are uncorrelated with the previous ones.

» Then
'P((S()7 50‘617 S1, FC)d(So = P(50 - 517 S0 — 51)d50

_ 1 o (0—61)2/2(s0—51)

N Vso — s1V2m



Distribution of first crossing: 111
» So, we know P (o, s0) and P(do, 0|91, s1, FC) and we want to determine frc(d1,51). noRa-TIFR

» To do this, let us integrate over dg:

9]

S0 oo
ddoP(do,s0) = / ds1 frc (61, 51) ddoP(do, 0|01, 51, FC),
0

51 51
1 - —63/2 * —(80—51)2/2(so—
- ddo e 0/250 _ / dsi fec(01, 51 déo e (80—681)%/2(s0 51)7
V2mso Js, Vso —s1v2 ) 51

1erfc

61 / / —52/2(so—s1)
d o1, déo 072350731
e () = v ), el ¢
I/ dSlﬁrc((sl,Sl) X
0

N =

» So,

S0 61 )
ds 01,51) = erfc .
gt =erte(

» This can be differentiated to show that

Src (61, 50) = _a e 01/250,

\/2msg



The Press-Schechter halo mass function
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» Then
(M, 2) = P e (5u(2), 5) |45
Y A PV
_ flo 0c(2) ~s52(9/2s

X\/i
:L@ (2)
\/%Myfs/z

This is known as the Press-Schechter mass function.

—5 (z)/25

M

» One can improve the model by incorporating collapse of ellipsoids. This leads to an improvement to the match with
simulations, and the mass function is known as the Sheth-Tormen mass function.
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Comparison with simulations
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