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Formation of haloes

▶ The formation of collapsed objects is crucial for forming galaxies. The first task is to obtain the mass distribution of
haloes (i.e., the halo mass function) in the universe for a cosmic density field.

▶ The full problem is non-linear and cannot be done analytically. However, there is an extremely interesting theoretical
model which captures the basics of the formation of haloes.

▶ We have already seen that, in the spherical approximation, a region collapses and forms a virialized object when the
linear density contrast within the region exceeds δc ≈ 1.69.

▶ Now, suppose we are given the initial density field, i.e., the linear density contrast δ(zin, x⃗). We know that it will grow
as D(z) in the linear theory.

▶ Writing δ(z, x⃗) = D(z) δ(⃗x), where δ(⃗x) is the linearly extrapolated field at z = 0, we understand that a region of
comoving radius X will collapse when

δX(z, x⃗) ≥ δc =⇒ δX(⃗x) ≥
δc

D(z)
≡ δc(z).
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Identification of haloes in the linear field

Identify all possible spherical regions which have δX(⃗x) ≥ δc(z). An extremely cumbersome method!

TRC, Haehnelt & Regan (2009)
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Sampling the random field

δ(⃗x)

x⃗

δX X

X → ∞ X → 0

▶ One can obtain the halo mass function analytically using what is
called the excursion set formalism.

▶ Consider the linear density field and let us concentrate on a given
point x⃗.

▶ Now we smooth the field using a spherical window of radius X. Let
us start with a large radius X → ∞ and compute δX(⃗x). If X is large
enough, we expect δX → 0.

▶ Next we take a smaller radius and compute δX(⃗x).
▶ We continue this process with smaller and smaller X.
▶ The smoothed quantity δX seems to be carrying out a “random

walk” as a function of smoothing radius X.
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Defining the random walk

▶ The problem can be mapped to a random walk if we make certain modifications to the earlier discussion.
▶ Let us choose the variable corresponding to random walk steps as s ≡ σ2(X) = σ2(M) (whereM = 4πX3ρ̄0/3)

instead of X.
▶ Note that s is a monotonically decreasing function of X and M. Also s → 0 as X → ∞. Thus all trajectories in the

δX − s space start from the origin.

δX s

s = 0 s → ∞

▶ Each location x⃗ in the density field δ(⃗x) corresponds to a trajectory δX(s), which reflects the value of the density field
at that location when smoothed with a filter of radius X(s).
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Recap of random walk
▶ Let x1, ..., xN be random variables which can take values ±1 with probabilities

P(xi = 1) = P(xi = −1) =
1

2
.

The xi can be thought of as the distance travelled in a step by a random walker.

▶ Let DN =

N∑
i

xi be the distance after N steps, which itself is a random variable. Then its expectation is

⟨DN⟩ =
N∑

i=1

⟨xi⟩ =
N∑
i

[P(xi = 1)× (+1) + P(xi = −1)× (−1)] = 0.

The symmetry of the probability ensures that the average distance travelled by an ensemble of walkers is zero.

▶ The variance is given by ⟨D2
N⟩ =

N∑
i,j=1

⟨xixj⟩. If the variables (steps) are uncorrelated, then ⟨xixj⟩ = 0 when i ̸= j. In

that case

⟨D2
N⟩ =

N∑
i=1

⟨x2i ⟩ = N.
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Filtered density field
▶ We write the density field smoothed over some length X as δX(⃗x) =

∫
d3y δ(⃗y)WX(|⃗y− x⃗|).

▶ In Fourier space, we can write this as δX(⃗x) =
∫

d3k
(2π)3

ei⃗k·⃗x δ(⃗k)W∗
X(k).

▶ Now, the correlation across different filter scales is given by

⟨δX1 (⃗x)δX2 (⃗x)⟩ =
∫

d3k
(2π)3

d3k′

(2π)3
ei⃗k·⃗xe−i⃗k′ ·⃗x

〈
δ(⃗k)δ∗(k⃗′)

〉
W∗

X1(k)WX2(k
′) =

∫ ∞

0

dk
k
∆2(k)W∗

X1(k)WX2(k).

▶ A special case is

⟨δ2X (⃗x)⟩ =
∫ ∞

0

dk
k
∆2(k)W∗

X(k)WX(k) ≡ σ2(X) ≡ s(X).

▶ Given the above relations, we can make the following correspondence with the random walk problem
Random variable: xi ⇐⇒ δ

Distance: DN ⇐⇒ δX

Expectation: ⟨DN⟩ = 0 ⇐⇒ ⟨δX⟩ = 0

Variance: ⟨D2
N⟩ = N ⇐⇒ ⟨δ2X ⟩ = s

Thus s ≡ σ2 should play the role of number of steps.
▶ Note that X, M and s all can be used for measuring the smoothing scale. Hence we will use the notation

δX ≡ δs.
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Correlation between steps

▶ We still need to show that different steps are uncorrelated for the random walk correspondence to work.
▶ One can show that this is possible if we use the sharp-k filter

WX(k) = θ

(
1

X
− k

)
.

▶ The corresponding filter in real space is

WX(r) =
sin(r/X)− (r/X) cos(r/X)

2π2r3
.

Tirthankar Roy Choudhury 7



Barrier crossing
▶ We have seen that the condition for collapse at redshift z is

δ(⃗x) ≥ δc
D(z)

≡ δc(z).

Thus δc(z) acts like a “barrier” which the random walks must cross for forming haloes.

δs

δc(zlow)
δc(zhigh)

s

▶ The condition for halo formation will be given by the random walks upcrossing the barrier for the first time.
▶ Any subsequent upcrossings would correspond to larger s, i.e., smaller length scales which would simply be structures

within the large halo.
▶ One can see that early redshift implies higher barrier. So statistically the random walks have to travel more at high

redshifts to cross the barrier.
▶ This implies that the haloes which collapse at early times will have larger values of s and hence smaller values of M.

Thus small-mass haloes form first. This is known as hierarchical structure formation.
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Mass function of haloes

▶ Let a random walk upcross the barrier δ0 = δc/D(z) at s0 for the first time. Then it is expected to form a collapsed
object of mass corresponding to the s0 at a redshift corresponding to D(z) = δc/δ0.

▶ Let fFC(δ, s)ds denote the fraction of random walks which first upcross the barrier δ at a point between (s, s+ ds).
▶ If δ = δc(z), this will be equal to the fraction of points f(M, z)dM which will collapse to objects with mass

(M,M+ dM) at redshift z.
▶ In the initial field, each of these points has a comoving volumeM(1 + δi)/ρ̄0 ≈ M/ρ̄0. So for a large comoving

volume V∞, the total number of points is V∞ρ̄0/M.
▶ Hence

fFC(δc(z), s)ds = f(M, z)dM =
1

ρ̄0

M
V∞

N(M, z)dM =
M
ρ̄0

n(M, z)dM,

or,

n(M, z) =
ρ̄0
M

fFC(δc(z), s)

∣∣∣∣ dsdM

∣∣∣∣ .
▶ This is the number of haloes per unit comoving volume per unit mass range, and is known as the halo mass

function.
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Distribution of first crossing: I

▶ To obtain fFC(δ, s), let us first consider the fraction of
trajectories P(δ0, s0)dδ0 which have value between
(δ0, δ0 + dδ0) at s = s0. The gaussianity of the linear density
field implies

P(δ0, s0) =
1√
2πs0

e−δ20/2s0 .

▶ All of these trajectories must have first upcrossed the point
δ = δ1 < δ0 at some s = s1 < s0.

▶ As per our definition, the fraction of points which first upcross
δ1 between (s1, s1 + ds1) is given by fFC(δ1, s1)ds1.

▶ Out of these, let a fraction P(δ0, s0|δ1, s1, FC) dδ0 have value
between (δ0, δ0 + dδ0) at s0.

▶ Hence, the fraction of points which first upcrossed δ1 between
(s1, s1 + ds1) and have value between (δ0, δ0 + dδ0) at s0 is

fFC(δ1, s1)ds1 × P(δ0, s0|δ1, s1, FC)dδ0.
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Distribution of first crossing: II

▶ The fraction of points which have value between (δ0, δ0 + dδ0) at s0 (irrespective of where they first upcrossed δ1) is
obtained by integrating the quantity over s1, i.e.,

P(δ0, s0)dδ0 =

∫ s0

0

ds1 fFC(δ1, s1)P(δ0, s0|δ1, s1, FC)dδ0.

▶ Now, the trajectories which first upcross δ1 at s1 can be thought of starting a new random walk from (δ1, s1) (instead
of (0, 0)). This follows from the fact that subsequent steps are uncorrelated with the previous ones.

▶ Then

P(δ0, s0|δ1, s1, FC)dδ0 = P(δ0 − δ1, s0 − s1)dδ0

=
1

√
s0 − s1

√
2π

e−(δ0−δ1)
2/2(s0−s1).
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Distribution of first crossing: III
▶ So, we know P(δ0, s0) and P(δ0, s0|δ1, s1, FC) and we want to determine fFC(δ1, s1).
▶ To do this, let us integrate over δ0:∫ ∞

δ1

dδ0P(δ0, s0) =
∫ s0

0

ds1 fFC(δ1, s1)
∫ ∞

δ1

dδ0P(δ0, s0|δ1, s1, FC),

1√
2πs0

∫ ∞

δ1

dδ0 e−δ20/2s0 =
1

√
s0 − s1

√
2π

∫ s0

0

ds1 fFC(δ1, s1)
∫ ∞

δ1

dδ0 e−(δ0−δ1)
2/2(s0−s1),

1

2
erfc

(
δ1√
2s0

)
=

1
√
s0 − s1

√
2π

∫ s0

0

ds1 fFC(δ1, s1)
∫ ∞

0

dδ̄0 e−δ̄20/2(s0−s1)

=

∫ s0

0

ds1 fFC(δ1, s1)×
1

2
.

▶ So, ∫ s0

0

ds1 fFC(δ1, s1) = erfc
(

δ1√
2s0

)
.

▶ This can be differentiated to show that

fFC(δ1, s0) =
δ1√
2πs30

e−δ21/2s0 .
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The Press-Schechter halo mass function

▶ Then

n(M, z) =
ρ̄0
M

fFC(δc(z), s)

∣∣∣∣ dsdM

∣∣∣∣
=

ρ̄0
M

∣∣∣∣ dsdM

∣∣∣∣× δc(z)√
2πs3

e−δ2c (z)/2s

=
1√
2π

ρ̄0
M

δc(z)
s3/2

∣∣∣∣ dsdM

∣∣∣∣ e−δ2c (z)/2s.

This is known as the Press-Schechter mass function.
▶ One can improve the model by incorporating collapse of ellipsoids. This leads to an improvement to the match with

simulations, and the mass function is known as the Sheth-Tormen mass function.
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Comparison with simulations
z = 7.0
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