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Statistics of density perturbations

▶ In the previous lectures, we have studied the temporal growth of density perturbations – using both linear and
non-linear theory. Now, we shall study the spatial distribution of the perturbations at different scales.

▶ In general, to specify the cosmological density field at any epoch t, one needs to know the value of ρ(⃗x) at all spatial
points x⃗. This is impossible since it requires knowledge of an infinite number of field values.

▶ Although we observe structures in the large-scale distribution of galaxies, there is no obvious pattern in the density
field.

▶ The cosmic density field is thus believed to be a random field generated by some stochastic processes, hence one
should study only the statistical properties of the cosmic density field. The density field we observe is simply one
specific realization of the underlying random field.

▶ The situation is similar to that in statistical mechanics where we are not interested in the positions and momenta of
individual particles, rather we study the statistical properties of the system using some distribution function.
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Ensembles of the cosmic density field
▶ Just like in statistical mechanics, it is convenient to define the

statistical properties in terms of the ensemble averages.
▶ Consider a ensemble of universe denoted by

α = 1, 2, . . . ,Nen, each with a density field ρ(α)(⃗x).
▶ Its ensemble average at a point x⃗i is denoted as

⟨ρ(⃗xi)⟩ = N−1
en

Nen∑
α=1

ρ(α)(⃗xi).

▶ If the universe is statistically homogeneous, then the ensemble
average should be independent of position:

⟨ρ(⃗xi)⟩ = ⟨ρ⟩.

▶ Now, in practice one cannot measure the ensemble averages
like ⟨ρ⟩. However, one can evaluate volume averages like

ρV(⃗x) =
1

V

∫
V
d3x′ ρ(⃗x+ x⃗′),

where V is volume centered at x⃗.
▶ How is ρV(⃗x) related to ⟨ρ⟩?

ρ(1)(⃗x)

ρ(2)(⃗x)

ρ(Nen)(⃗x)

x⃗1 x⃗2 x⃗N
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Ergodicity
▶ Clearly the ensemble average of the volume average is given by

⟨ρV(⃗x)⟩ =
1

V

∫
V
d3x′

⟨
ρ(⃗x+ x⃗′)

⟩
= ⟨ρ⟩ 1

V

∫
V
d3x′ = ⟨ρ⟩.

Hence the volume average is an unbiased estimator of ⟨ρ⟩.
▶ However, the volume average will be useful only if the variance of the quantity among various ensembles is small. In

other words, we should try to determine the conditions under which the variance
⟨
(ρV(⃗x)− ⟨ρ⟩)2

⟩
is small.

▶ It can be shown that the variance
⟨
(ρV(⃗x)− ⟨ρ⟩)2

⟩
goes to zero as V → ∞ (length larger than the correlation scale).

▶ Thus the quantity ρV can be a good estimator of ⟨ρ⟩ provided V is large, i.e.,

lim
V→∞

ρV(⃗x) = lim
V→∞

1

V

∫
V
d3x′ ρ(⃗x+ x⃗′) ⇐⇒ ⟨ρ⟩.

▶ This corresponds to the equality between ensemble and volume averages, similar to the ergodicity used in statistical
mechanics.

▶ We will write

lim
V→∞

ρV = lim
V→∞

1

V

∫
V
d3x ρ(⃗x) ≡ ρ̄.

▶ One can also show that as V → ∞, all other relevant statistical quantities also satisfy the ergodicity.

▶ We can also define the density contrast as earlier δ(⃗x) ≡ ρ(⃗x)
ρ̄

− 1. Note that ⟨δ⟩ = δ̄ = 0.
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Probabilistic interpretation
▶ Let us consider a set of N point objects (say, galaxies) of mass m. Then the density is given by

ρ(⃗x) = m
N∑

i=1

δD(⃗x− x⃗i).

▶ Clearly, the volume average is as expected given by

ρ̄ =
1

V

∫
V
d3x ρ(⃗x) =

mN
V

= mn.

▶ The probability of finding a mass point (galaxy) in a randomly chosen volume ∆V at x⃗ is given by

P1 = n∆V =
⟨ρ(⃗x)⟩∆V

m
.

▶ The joint probability of finding a galaxy in ∆V1 and a galaxy in ∆V2 is

P12 =
⟨ρ(⃗x1)ρ(⃗x2)⟩∆V1∆V2

m2
=

n2⟨ρ(⃗x1)ρ(⃗x2)⟩
ρ̄2

∆V1∆V2 = n2 [1 + ξ(⃗x1, x⃗2)]∆V1∆V2,

where

ξ(⃗x1, x⃗2) ≡
⟨ρ(⃗x1)ρ(⃗x2)⟩

ρ̄2
− 1

measures the excess probability, over random, of finding two galaxies at the volume elements ∆V1 and ∆V2.
▶ The quantity ξ is called the two-point correlation function.
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Two-point correlation function

▶ In terms of the density contrast, we have

ξ(⃗x1, x⃗2) =
⟨
ρ(⃗x1)
ρ̄

ρ(⃗x2)
ρ̄

⟩
− 1 = ⟨[1 + δ(⃗x1)] [1 + δ(⃗x2)]⟩ − 1 = ⟨δ(⃗x1)δ(⃗x2)⟩.

▶ The statistical homogeneity would imply that the correlation function should depend only on the separation between
the two points, i.e.,

ξ(⃗x1, x⃗2) = ξ(⃗x1 − x⃗2).

▶ Similarly, statistical isotropy would imply that

ξ(⃗x1 − x⃗2) = ξ(|⃗x1 − x⃗2|),

i.e., the correlation does not depend on the direction of the separation between the two points.
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Fourier transform

▶ The Fourier transform of the density contrast is

δ(⃗k) =
∫

d3x δ(⃗x) e−i⃗k·⃗x.

Note that δ∗(⃗k) = δ(−k⃗) because δ(⃗x) is real.
▶ Then ⟨

δ(⃗k) δ∗(⃗k′)
⟩
=

⟨∫
d3x δ(⃗x)e−i⃗k·⃗x

∫
d3x′ δ(x⃗′)ei⃗k′ ·⃗x′

⟩
=

∫
d3x

∫
d3x′e−i(⃗k·⃗x−⃗k′ ·⃗x′)⟨δ(⃗x)δ(⃗x′)⟩

=

∫
d3x

∫
d3x′e−i(⃗k·⃗x−⃗k′ ·⃗x′) ξ(⃗x, x⃗′).

▶ From statistical homogeneity, we get ξ(⃗x, x⃗′) = ξ(⃗x− x⃗′)⟨
δ(⃗k) δ∗(⃗k′)

⟩
=

∫
d3x

∫
d3x′e−i(⃗k·⃗x−⃗k′ ·⃗x′)ξ(⃗x− x⃗′) = (2π)3 δD(⃗k− k⃗′)

∫
d3y′e−i⃗k·⃗y′ξ(⃗y′).
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Power spectrum
▶ Define the power spectrum as the Fourier transform of the correlation function

P(⃗k) =
∫

d3x e−i⃗k·⃗x ξ(⃗x),

so that ⟨
δ(⃗k) δ∗(k⃗′)

⟩
= (2π)3δD(⃗k− k⃗′)P(⃗k).

Thus the different k⃗-modes are statistically uncorrelated for a statistically homogeneous universe.
▶ Now from statistical isotropy, we get ξ(⃗x) = ξ(|⃗x|). Hence

P(⃗k) =
∫

d3x e−i⃗k·⃗x ξ(x) = 2π

∫ ∞

0

dx x2 ξ(x)
∫ 1

−1

dµ e−ikxµ =

∫ ∞

0

dx
[
4πx2ξ(x)

]( sin kx
kx

)
,

showing that P(⃗k) = P(k).
▶ The correlation function can be written as a inverse Fourier transform

ξ(x) ≡ ⟨δ(⃗y) δ(⃗y− x⃗)⟩ =
∫

d3k
(2π)3

P(k) ei⃗k·⃗x =

∫ ∞

0

dk
k

[
k3P(k)
2π2

](
sin kx
kx

)
.

▶ The quantity

∆2(k) ≡ k3P(k)
2π2

is called the dimensionless power spectrum. It measures the power contained within logarithmic intervals in k.
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Smoothed density contrast
▶ We can smooth the density contrast over some length scale X using window functions

δX(⃗x) =
∫

d3y δ(⃗y)WX(⃗y− x⃗) =
∫

d3y δ(⃗x+ y⃗)WX(⃗y).

▶ This implies δX(⃗k) = δ(⃗k)WX(−k⃗).
▶ One example of the window function is the spherical top-hat filter

WX(y) =
(
4πX3

3

)−1

θ(X− |⃗y|).

In this case

δX(⃗x) =
(
4πX3

3

)−1 ∫
d3y δ(⃗x+ y⃗)θ(X− |⃗y|),

where the theta function ensures that the integral is over a sphere of radius X.
▶ The Fourier transform of the spherical top hat filter is

WX(k) =
∫

d3x e−i⃗k·⃗xWX(x) =
3(sin kX− kX cos kX)

k3X3
.

▶ Other examples of window functions are Gaussian and sharp-k filters.
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Fluctuations averaged over a scale
▶ The density fluctuations averaged over a window function is

σ2(X) ≡ ⟨δ2X ⟩ =
⟨∫

d3y δ(⃗x+ y⃗)WX(⃗y)
∫

d3y′ δ(⃗x+ y⃗′)WX(y⃗′)
⟩

=

∫
d3k
(2π)3

P(k) |WX(⃗k)|2.

▶ For example, the density fluctuations averaged over a sphere of radius X is given by

⟨δ2X ⟩ = σ2(X) =
∫ ∞

0

dk
k

[
k3P(k)
2π2

] [
3(sin kX− kX cos kX)

k3X3

]2

.

Note that σ2 ≡ σ2(0) = ξ(0) = ⟨δ2⟩.
▶ The function σ(X) is usually a monotonic function of X at scales of interest, it decreases with increasing X.
▶ The quantity σ(X) can be used to fix the normalization of the power spectrum. If we write P(k) = AsknT2(k), then

the fluctuations within a sphere of radius X will be

σ2(X) = As

∫ ∞

0

dk
k

[
k3+n

2π2

]
T2(k)

[
3(sin kX− kX cos kX)

k3X3

]2

.

▶ It is possible, from measurements of cluster abundances, to constrain the value of σ8 ≡ σ(X = 8h−1 Mpc). One can
then find the value of As and thus the power spectrum is fully determined.

▶ An alternate way of normalizing the power spectrum is to use the CMB fluctuations measured by COBE (often called
COBE-normalization).
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Probability distribution of a random field

▶ It is quite difficult to specify a general random field, because it involves the determination of an infinite number of
quantities.

▶ For simplicity let us divide the volume into n infinitesimal cells which are centred at x⃗1, x⃗2, . . . , x⃗n. In the continuum
limit we take n → ∞ and the cell volumes go to zero.

▶ The random perturbation field δ(⃗x) is then characterized by the set of n numbers δ1, δ2, . . . , δn, where δi ≡ δ(⃗xi).
▶ To specify the field in a statistical sense, we need to specify the probability distribution function

P(δ1, δ2, . . . , δn) dδ1 dδ2 . . . dδn,

which gives the probability that the field δ has values in the range δi to δi + dδi at positions x⃗i (i = 1, 2, . . . , n).
▶ In general, we need to specify infinite number of moments to determine P .
▶ Fortunately, the initial linear density perturbation field in the Universe is found to be well approximated by a

homogeneous and isotropic Gaussian random field which is completely determined, in a statistical sense, by its
power spectrum or its two-point correlation function.
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Gaussian random field
▶ For a set of linear density contrasts δ(⃗xi) = δi, the joint probability distribution is given by

P(δ1, ..., δn) =
1

(2π)n/2|M|1/2
exp

[
−1

2
δT ·M−1 · δ

]
,

where
Mij = ⟨δiδj⟩.

Note that ⟨δi⟩ = 0.
▶ Note that the δ’s at two points are correlated through the off-diagonal terms of Mij.
▶ The one point distribution is given by

P(δ) =
1

σ
√
2π

e−δ2/2σ2

,

i.e., it is completely determined by the variance ⟨δ2⟩ = σ2.
▶ Note that the smoothed density field δX is just a sum of many Gaussian random variables δi, thus it too is a Gaussian

random field. The variance is σ2(X), and hence the one point distribution function is

P(δX) =
1

σ(X)
√
2π

e−δ2X /2σ
2(X).

▶ The Fourier modes δ(⃗k) too are sum of Gaussian random variables δi and thus form a Gaussian random field.

However, they are uncorrelated, i.e.,
⟨
δ(⃗k)δ∗(⃗k′)

⟩
= 0 for k⃗ ̸= k⃗′. Hence only the diagonal terms in the covariance

matrix survive and they are essentially given by P(k).
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Linearly extrapolated fields
▶ In the linear regime, we know that δ ∝ D(z) (both in the real and Fourier space).
▶ Suppose we extrapolate this evolution up to z = 0 (when the linear approximation is not valid). Then we can write

δ(z, k⃗) = D(z) δ(z = 0, k⃗).

This is known as the linearly extrapolated density field.
▶ The linearly extrapolated power spectrum is

P(z, k) = D2(z) P(z = 0, k) = D2(z) P(k),

where P(k) = P(z = 0, k) is the power spectrum linearly extrapolated to z = 0.

Courtesy ESA and Planck Collaboration

▶ A similar relation can be written for the fluctuations in real space, e.g., σ2(z, X) = D2(z) σ2(X).
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The CMB fluctuations

▶ The same formalism can be applied to fields defined on the surface of the sky, e.g., the CMB. In that case, rather than
using the three-dimensional Fourier transform, one can use the spherical harmonic transforms.

▶ The temperature fluctuations Θ(θ, ϕ) ≡ δT(θ, ϕ)/T0, defined on the surface, can be decomposed as

aℓm =

∫
dΩ Y∗

ℓm(θ, ϕ) Θ(θ, ϕ),

with the inverse transform being

Θ(θ, ϕ) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

aℓmYℓm(θ, ϕ).

▶ The power spectrum of temperature fluctuations is

Cℓ =
⟨
|aℓm|2

⟩
.

▶ The correlation function is

C(ϑ) ≡ ⟨Θ(θ1, ϕ1) Θ(θ2, ϕ2)⟩ =
1

4π

∑
ℓ

(2ℓ+ 1) Cℓ Pℓ(cosϑ).
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