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Fluid equations

▶ The evolution of cosmological perturbations is quite a complicated exercise in linearized general relativity. However,
the most interesting scales, where formation of structures takes place in the post-recombination era, are much
smaller than the Hubble length c/H(z).

▶ For such scales, relativistic effects can be ignored and most of the essential physics can be extracted from a
Newtonian approach. We can treat the dark matter and baryons as fluids, their properties being governed by the
non-relativistic equations of fluid dynamics.

▶ The fundamental equations governing fluid motion are

ρ̇(t, r⃗) + ∇⃗r · [ρ(t, r⃗) U⃗(t, r⃗)] = 0 (Continuity equation)

˙⃗U(t, r⃗) + [U⃗(t, r⃗) · ∇⃗r]U⃗(t, r⃗) = −∇⃗rΦ(t, r⃗)−
∇⃗rP(t, r⃗)
ρ(t, r⃗)

(Euler equation)

∇⃗2
r Φ(t, r⃗) = 4πGρ(t, r⃗) (Poisson equation)

where
– the overdot represents partial derivative ∂/∂t,
– ∇⃗r is the spatial gradient operator with respect to the proper coordinates r⃗,
– the fluid density and pressure are denoted by ρ(t, r⃗) and P(t, r⃗), respectively,
– the proper velocity of the fluid is U⃗(t, r⃗) ≡ d⃗r/dt,
– the quantity Φ(t, r⃗) is the gravitational potential.
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Comoving coordinates

▶ The equations can be rewritten in terms of the comoving coordinate x⃗ defined by

r⃗ = a(t)⃗x.

▶ The comoving coordinates label observers who follow the Hubble expansion in an unperturbed universe (i.e., x⃗ would
not change for these observers if the universe in unperturbed). Hence, the large-scale expansion is divided out in the
comoving coordinates, the only way they change is because of irregularities.

▶ We then have
∇⃗r =

1

a
∇⃗x,

and

U⃗ =
d⃗r
dt

= ȧ⃗x+ a
d⃗x
dt

=
ȧ
a
r⃗+ a

d⃗x
dt

.

▶ The quantity v⃗ ≡ a d⃗x/dt is the peculiar velocity. The first part (ȧ/a) r⃗ is the “Hubble velocity”.
▶ The physical density can be written in terms of the comoving density ρ0 as

ρ =
ρ0
a3

.
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Perturbed quantities

▶ We can also divide out the smooth component of other quantities and write the equations in terms of the perturbed
quantities, namely,

Density contrast δ(t, x⃗) ≡ ρ(t, x⃗)
ρ̄(t)

− 1

Peculiar velocity field v⃗(t, x⃗) ≡ a(t)
d⃗x
dt

= U⃗(t, x⃗)− ȧ
a
r⃗

Perturbed pressure p(t, x⃗) = P(t, x⃗)− P̄(t)

Perturbed gravitational field ϕ(t, x⃗) = Φ(t, x⃗)− Φ̄(t, x⃗).

▶ The symbols with bars denote the average values of the corresponding quantities, which are independent of the
spatial coordinates except Φ̄, which satisfies the equation for the smooth universe

∇⃗2
r Φ̄ = 4πGρ̄.
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Fluid equations in terms of the perturbed quantities

▶ While writing the equations in terms of the perturbed quantities and comoving coordinates, the crucial point to note
is that the time derivative ∂/∂t has to be modified while changing the coordinates from r⃗ → x⃗, i.e.,
∂/∂t → ∂/∂t− (ȧ/a)⃗x · ∇⃗x whenever we write the equations in terms of x⃗.

▶ In terms of these perturbed quantities, the perturbed fluid equations (i.e., after subtracting out the zeroth order
unperturbed part) become

δ̇ +
1

a
∇⃗ · [(1 + δ) v⃗] = 0,

˙⃗v+
ȧ
a
v⃗+

1

a
(⃗v · ∇⃗)⃗v = −1

a
∇⃗ϕ− ∇⃗p

aρ̄(1 + δ)
,

∇⃗2ϕ = 4πGρ̄a2δ,

where we are using the convention
∇⃗ ≡ ∇⃗x.
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Dark matter and baryons
▶ To study in full detail, one has to solve the fluid equations for dark matter and baryons separately.
▶ In order to do this, it is assumed that pDM = 0 for the collisionless dark matter.
▶ However, since the baryons collide among themselves and interact with radiation, one cannot neglect the

corresponding pressure term pb ∝ ρbkBT.
▶ Thus the equations for dark matter and baryons become

δ̇DM +
1

a
∇⃗ · [(1 + δDM) v⃗DM] = 0,

˙⃗vDM +
ȧ
a
v⃗DM +

1

a
(⃗vDM · ∇⃗)⃗vDM = −1

a
∇⃗ϕ,

δ̇b +
1

a
∇⃗ · [(1 + δb) v⃗b] = 0,

˙⃗vb +
ȧ
a
v⃗b +

1

a
(⃗vb · ∇⃗)⃗vb = −1

a
∇⃗ϕ− ∇⃗pb

aρ̄b(1 + δb)
,

∇⃗2ϕ = 4πGa2(ρ̄DMδDM + ρ̄bδb) =
3

2

H2
0

a
(ΩDM,0δDM +Ωb,0δb) ,

where, in the last equation, we have used

ρ̄DM(t) =
ρ̄DM,0

a3(t)
=

ΩDM,0ρc,0
a3(t)

=
3H2

0ΩDM,0

8πGa3

and similarly for baryons too.
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Decoupling the equations
▶ Now use the fact that Ωm,0/Ωb,0 ≈ 6 and δDM ≳ δb for scales of interest to write

ΩDM,0δDM +Ωbδb = ΩDM,0δDM +Ωb,0δDM − Ωb,0δDM +Ωb,0δb

= Ωm,0δDM

(
1− Ωb,0

Ωm,0
+

Ωb,0δb
Ωm,0δDM

)
≈ Ωm,0δDM

and hence the last equation becomes

∇⃗2ϕ ≈ 3

2

H2
0

a
Ωm,0δDM

▶ With the assumption made above, one can see that the dark matter perturbations evolve independent of baryons and
can be described by five equations

δ̇DM +
1

a
∇⃗ · [(1 + δDM) v⃗DM] = 0,

˙⃗vDM +
ȧ
a
v⃗DM +

1

a
(⃗vDM · ∇⃗)⃗vDM = −1

a
∇⃗ϕ,

∇⃗2ϕ =
3

2
H2

0Ωm,0
δDM
a

.

▶ These five equations contain five unknowns, namely, δDM, v⃗DM, ϕ, and hence can be solved if the initial conditions are
known.
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Linear dark matter perturbations

▶ The system of dark matter fluid equations can be solved analytically in the linear theory.
▶ Neglecting second order terms in perturbed quantities, our basic equations become

δ̇DM +
1

a
∇⃗ · v⃗DM = 0,

˙⃗vDM +
ȧ
a
v⃗DM = −1

a
∇⃗ϕ,

∇⃗2ϕ =
3

2
H2

0Ωm,0
δDM
a

.

▶ One should note that they are identical to what we derived earlier using relativistic perturbation theory.
▶ From the above, one can derive a second order ordinary differential equation for δDM

δ̈DM + 2
ȧ
a
δ̇DM =

3

2
H2

0Ωm,0
δDM
a3

.
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Gravitational instability
▶ For the moment, suppose we assume a static universe with a = 1. Then the solutions to the equation are

δDM(t) =
δDM(0)

2

[
exp

(√
3H2

0Ωm,0

2
t

)
+ exp

(
−
√

3H2
0Ωm,0

2
t

)]
,

where we have assumed δ̇DM(0) = 0.
▶ At late times, the contrast will grow exponentially. Thus overdense points δDM > 0 would become more overdense,

while underdense points δDM < 0 would become more underdense. This is known as gravitational instability.

Figure taken from a talk by Michael Norman

▶ The presence of ȧ/a introduces a drag term due to expansion.
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Growing soutions

▶ The equation for the dark matter has a solution of the form δDM(t, x⃗) = D(t)f(⃗x), where f(⃗x) is some arbitrary
function of the spatial coordinates depending on the initial configuration of the density field.

▶ Clearly, D(t) follows the evolution equation

D̈(t) + 2
ȧ
a
Ḋ(t) =

3

2
H2

0Ωm,0
D(t)
a3

.

▶ This equation has two linearly independent solutions D1 and D2, of which, only one is growing with time.
▶ For a ΛCDM universe, the decaying solution is nothing but the Hubble parameter D2(a) = H(a), while the growing

mode is given by

D1(a) = H(a)
∫ a da′

H3(a′)a′3
.
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Growing mode in different situations

▶ For a matter-dominated universe, we have

D2(a) = H(a) = H0a
−3/2

and hence

D1(a) = H(a)
∫ a da′

H3(a′)a′3
= H0a

−3/2

∫ a da′

H3
0a′−3/2

∝ a

Thus the perturbations grow as the scale factor (as already seen in the relativistic perturbation theory).
▶ On the other hand, for a completely Λ-dominated universe, we have

D2(a) = H(a) = H0

and hence

D1(a) ∝
∫ a da′

a′3
∝ a−2

It means that D1(a) is actually the decaying solution while H = constant is the growing one.
▶ We thus write D1(a) = H = constant and D2(a) ∝ a−2. Thus, once the universe becomes dark energy dominated,

the growth of perturbations slow down and eventually stop.
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Solutions to the linear equations
▶ The general solution is thus given by

δDM(t, x⃗) = D1(t)f1(⃗x) + D2(t)f2(⃗x),

where D1 is the growing solution and D2 is the decaying one.
▶ For structure formation studies, the decaying solution is of no use as it will be dominated by the growing one at

epochs of interest. Hence, from now on, by D(t) we shall mean the growing solution.
▶ Usually, D(t) is normalized such that it is unity at the present epoch.

▶ From the Poisson equation, we find that the potential evolves as ϕ ∝ D
a
, which for a matter dominated universe

becomes constant.
▶ From the continuity equation, we see that the peculiar velocity evolves as v⃗DM ∝ a Ḋ.
▶ Conventionally, the linear evolution of the peculiar velocity field is written as

v⃗DM(a) ∝ a D(a) H(a) f(a), f(a) ≡ Ḋ
D

a
ȧ
=

d lnD(a)
d ln a

.

▶ For calculational purposes, f(a) or f(z) can be well approximated by a fitting function of the form

f(z) ≈ Ω
4/7
m,0(z) =

[
Ωm,0(1 + z)3

H2(z)/H2
0

]4/7
.

▶ Note that f(z) is very close to unity at redshifts z > 2 for flat cosmological models.
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Baryonic perturbations
▶ Let us now turn our attention to the baryonic equations

δ̇b +
1

a
∇⃗ · [(1 + δb) v⃗b] = 0,

˙⃗vb +
ȧ
a
v⃗b +

1

a
(⃗vb · ∇⃗)⃗vb = −1

a
∇⃗ϕ− ∇⃗pb

aρ̄b(1 + δb)
,

where we assume that ϕ is already obtained by solving the dark matter evolution equations.
▶ Note that the above system has five unknown variables, namely, δb, v⃗b, pb but only four equations.
▶ Hence, to solve the system, one needs to provide a relation between the density and pressure of the baryons, loosely

called the “effective the equation of state”.
▶ One way to address this is by specifying the sound speed

c2s ≡ ∂pb
∂ρb

=⇒ ∇⃗pb = c2s ∇⃗ρb = c2s ρ̄b∇⃗δb.

▶ Hence the Euler equation becomes

˙⃗vb +
ȧ
a
v⃗b +

1

a
(⃗vb · ∇⃗)⃗vb = −1

a
∇⃗ϕ− c2s

∇⃗δb
a(1 + δb)

.

Tirthankar Roy Choudhury 12



Linear baryonic perturbations

▶ The system of fluid equations for baryons too can be solved exactly in the linear theory.
▶ Neglecting second order terms in perturbed quantities, our basic equations become

δ̇b +
1

a
∇⃗ · v⃗b = 0,

˙⃗vb +
ȧ
a
v⃗b = −1

a
∇⃗ϕ− c2s

a
∇⃗δb.

▶ The evolution equation for δb is

δ̈b + 2
ȧ
a
δ̇b −

c2s
a2

∇⃗2δb =
3

2
H2

0Ωm,0
δDM
a3

.
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Fourier solutions
▶ To obtain the linear solutions, it is more convenient to work in the Fourier domain (for both DM and b)

δ(⃗k) =
∫

d3x δ(⃗x)e−i⃗k·⃗x, δ(⃗x) =
∫

d3k
(2π)3

δ(⃗k)ei⃗k·⃗x,

and similarly for other quantities.
▶ Clearly, the Fourier transform of ∇⃗δ(⃗x) is i⃗kδ(⃗k) and that of ∇⃗2δ(⃗x) is −k2δ(⃗k).
▶ Then the equation for δb in Fourier space turns out to be

δ̈b + 2
ȧ
a
δ̇b + k2

c2s
a2

δb =
3

2
H2

0Ωm,0
δDM
a3

.

▶ Note that according to the linear theory, the Fourier modes δ(⃗k, t) evolve independent of each other.
▶ At this point, define a new quantity known as the Jeans length or Jeans scale

xJ ≡
cs
H0

√
2a

3Ωm,0
.

▶ In terms of sound speed, one can see that xJ ∼ cs/
√
Gρm.

▶ The equation then takes the form

δ̈b + 2
ȧ
a
δ̇b +

3

2
H2

0Ωm,0
δb
a3

(x2J k
2) =

3

2
H2

0Ωm,0
δDM
a3

.
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Solutions to the baryonic perturbations

▶ In the simple situation where xJ is independent of time, the solution of the above equation is

δb(t, k⃗) =
δDM(t, k⃗)
1 + x2J k2

.

▶ The above equation shows that at scales much larger than xJ, i.e., for k ≪ x−1
J , we have δb ≈ δDM. Thus the baryon

and dark matter evolve identically. This is expected because the pressure does not play any role at very large scales.
▶ On smaller scales, we find δb ≈ δDM/(x2J k

2), showing that the perturbations in baryons are suppressed because of
pressure support.

▶ Using the linearity of equations, one can show that the baryonic velocity field evolves as

v⃗b =
v⃗DM

1 + x2J k2
.
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Evolution of Jeans scale

▶ The evolution of Jeans scale depends on the evolution of the baryon (gas) temperature.
▶ For an ideal gas, we can write

pb =
ρbkBT
µmp

,

where µ ≡ ρb/µnb is the mean molecular weight.
▶ If we assume that

T = T0

(
ρb
ρ̄b

)γ−1

,

valid for low-density gas in the intergalactic medium, then

c2s = γ
kBT
µmp

.

▶ The Jeans scale is

xJ =
1

H0

√
2aγkBT

3µmpΩm,0
.

▶ Typical value is xJ ∼ 100 kpc (comoving) at z ∼ 3 (assuming T ∼ 104 K).
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Evolution of gas temperature
▶ In absence of any interaction, we expect T ∝ a−2 ∝ (1 + z)2. In general, it is determined by

dT
dt

= −2
ȧ
a
T+

xe(t)
tT

Tr − T
a4

+
2

3kBnb
H,

where tT ≡
3me

8ρ̄r,0σTc
, Tr = 2.73 K/a and the three terms on the right are

– adiabatic cooling ∝ (1 + z)2 ,
– Thomson scattering off free electrons left-over from recombination,
– net heating arising from structure formation / galaxy formation / reionization.

▶ At early times T ∝ (1 + z), same as radiation. At z ∼ 200, it decouples from radiation and T ∝ (1 + z)2. The gas
heats up once star formation begins.
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