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Temperature fluctuations
▶ The CMB sky shows small fluctuations in the temperature, i.e., the value is different in different directions

Θ(n̂) ≡ δT(n̂)
T0

∼ 10−5.

▶ Analogous to Fourier transforms, one can expand a field on a spherical surface as

Θ(n̂) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

aℓm Yℓm(n̂), aℓm =

∫
dΩ Θ(n̂) Y∗

ℓm(n̂).

▶ The equivalent of the power spectrum is the angular power spectrum (to be defined more rigorously later)

Cℓ =
1

2ℓ+ 1

ℓ∑
m=−ℓ

|aℓm|2 .

Sometimes the power spectrum is defined as T20 Cℓ. Also, Dℓ = ℓ(ℓ+ 1)
Cℓ

2π
.
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Features in the angular power spectrum

▶ The measured power spectrum agrees extremely well with the theoretical one. Shows various features at different
angular scales.

▶ We will discuss the physics of these features in a simplistic manner.
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Radiation perturbations
▶ To the zeroth order, we assume that the temperature fluctuations measure the radiation perturbations at the

last scattering surface (keeping in mind that ρr ∝ T4)

Θ(n̂) ∼ 1

4
δr(ηLSS, x⃗ = ηLSSn̂)

▶ The evolution of the different species is given by the conservation equations (with k2 ≡ γαβkαkβ)

δ′ = (k2V+ 3ϕ′)

(
1 +

P̄
ρ̄

)
− 3

a′

a
p− P̄δ
ρ̄

,

V′ = −4
a′

a
V− ρ̄′ + P̄′

ρ̄+ P̄
V− 1

ρ̄+ P̄
p− ϕ.

▶ For radiation, we have P̄r = ρ̄r/3. If we assume Pr = ρr/3, then pr = Pr − P̄r = P̄rδr.
▶ Also, ρ̄r ∝ a−4 =⇒ ρ̄′r/ρ̄r = −4a′/a. The equations are then

δ′r =
4

3
k2Vr + 4ϕ′, V′

r = −δr
4
− ϕ.

▶ For baryons, we can ignore the pressure, use ρ̄′m/ρ̄m = −3a′/a and write

δ′b = k2Vb + 3ϕ′, V′
b = −a′

a
Vb − ϕ.

Note that the same equations should hold for dark matter too.
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Baryon-photon fluid

▶ The equations we wrote hold when the different fluids are not interacting with each other. However, we know that
before decoupling, the photons and baryons (electrons) were scattering off each other.

▶ In that case, we need to add the interaction term to the equations. Without deriving the term, we write it directly as

δ′r =
4

3
k2Vr + 4ϕ′, V′

r = −δr
4
− ϕ− aσTne (Vr − Vb) ,

δ′b = k2Vb + 3ϕ′, V′
b = −a′

a
Vb − ϕ+ aσTne

Vr − Vb

R
,

where
R ≡ 3ρ̄b

4ρ̄r
.

▶ The interaction term acts as a “drag” and tries to bring the baryons and photons to have the same velocity.
▶ In fact, the (comoving) photon mean free path λT = (aσTne)−1 ∼ 1− 2 Mpc just before decoupling. Compare this

with the comoving Hubble radius η = (aH)−1 ≳ 200Mpc. Thus we can take the limit λT → 0, which is known as
the tight-coupling approximation.

▶ To the zeroth order in λT, we have

Vr ≈ Vb, δr ≈
4

3
δb.
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First order corrections
▶ To obtain the first order corrections to the tight-coupling limit, we use the zeroth order solutions and write the

baryon velocity equation as

aσTne(Vr − Vb) = R
(
V′
b +

a′

a
Vb + ϕ

)
≈ R

(
V′
r +

a′

a
Vr + ϕ

)
▶ Put this in the photon velocity equation to obtain the first order corrections

δ′r =
4

3
k2Vr + 4ϕ′, V′

r = −a′

a
R

1 + R
Vr −

1

4(1 + R)
δr − ϕ.

▶ Use R′/R = ρ̄′b/ρ̄b − ρ̄′r/ρ̄r = a′/a, and eliminate Vr from the two equations

δ′′r +
R′

1 + R
δ′r + k2c2s δr = G

where

cs =
1√

3(1 + R)
, G = 4

(
ϕ′′ +

R′

1 + R
ϕ′ − 1

3
k2ϕ

)
.

▶ Note that the square of the baryon-photon sound speed is

∂P
∂ρ

=
P′r

ρ′b + ρ′r
=

1

3

ρ′r
ρ′b + ρ′r

=
1

3

[
−4(a′/a)ρr

−3(a′/a)ρb − 4(a′/a)ρr

]
=

1

3

1

1 + R
.

Thus the sound speed is nothing but cs.
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Approximate solutions
▶ The equation has the form of a forced harmonic oscillator

δ′′r +
R′

1 + R
δ′r + k2c2s δr = G.

The solutions will be oscillatory with a phase φ = k
∫
dη cs(η).

▶ We can define the sound horizon as

rs(η) ≡
∫ η

0

dη′ cs(η
′) =

1√
3

∫ η

0

dη′√
1 + R(η′)

.

▶ If the phase of the solution varies faster than the amplitude, we can use WKB approximation to find the solution to
the homogeneous equation. This condition is effectively k cs ≫ Ṙ/(1 + R) ∼ η−1, i.e., valid for scales smaller than
the sound horizon.

▶ Once the solutions to the homogeneous part are found, one can use the Wronskian to find the full solution. The
solution in this approximation turns out to be

δr(η) ≈ A1
sin(krs)

[1 + R(η)]1/4
+ A2

cos(krs)
[1 + R(η)]1/4

+

√
3

k

∫ η

0

dη′
[1 + R(η′)]3/4

[1 + R(η)]1/4
sin

[
k
{
rs(η)− rs(η

′)
}]

G(η′).

The constants can be fixed by the initial conditions.
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Acoustic peaks

▶ The solution clearly has peaks and troughs with a scale rs. The power spectrum ∝ |δr|2 will have peaks separated by
∆ks = π/rs.

▶ The corresponding separation in angular multipoles would be∆ℓs = ηLSS ∆ks = πηLSS/rs. The corresponding angular
scale is θs = π/∆ℓs = rs/ηLSS.

▶ These oscillatory features in the power spectrum are called baryon acoustic oscillations (BAO).
▶ Observations can constrain θs (which depends on the cosmological parameters).
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Diffusion damping
▶ To the second order in λT ≡ (aσTne)−1, one finds that the photons diffuse from hot (high density) regions to

cold (low density). This leads to a decrease in fluctuations, called diffusion damping or Silk damping.
▶ To work out the details, it turns out that the simple perfect fluid picture for photons is not sufficient. Rather one has

to work with the Boltzmann equation involving the distribution function f(η, p⃗, x⃗).
▶ An order of magnitude estimate is possible for the diffusion damping scale λD. If a photon does a random walk and

suffers Nscat scatterings off electrons, it travels a distance λD ∼
√
Nscat λT. Over a cosmic time η, the number of

scatterings would be Nscat ∼ η/λT. Thus λ2
D ∼ η λT.

▶ At scales ≪ λD, the fluctuations will be damped.
▶ The full calculation shows(

λD

2π

)2

≡ 1

k2D
=

1

6

∫ η

0

dη′
λT(η

′)

[1 + R(η′)]2

[
R2(η′) +

4

5fP

(
1 + R(η′)

)]
,

where fP is a correction factor for polarization (= 1 for isotropic unpolarized light).
▶ This leads to δr −→ δr e−k2/k2D .
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BAO post decoupling
▶ After the baryons decouple from the radiation, the perturbations grow δb ∝ a. Similarly, δDM ∝ a and
ρ̄mδm = ρ̄DMδDM + ρ̄bδb.

▶ The growth of δb contain both density and velocity perturbations from the decoupling epoch which leads to shifts in
the BAO peaks.

▶ In presence of baryons, the matter transfer function changes to

T(k) =
ΩDM,0

Ωm,0
TDM(k) +

Ωb,0

Ωm,0
Tb(k), Ωm,0 = ΩDM,0 +Ωb,0

The effects of the BAO would be imprinted through Tb(k).
Baryon (acoustic) oscillations	
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BAO in galaxy surveys
SDSS DR9

Anderson et al (2012)
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Boltzmann equation for photons
▶ In general, the evolution of radiation perturbations need to be solved using the distribution function f(η, p⃗, x⃗), which is the number

per unit phase space volume. The distribution satisfies the Boltzmann equation

∂f

∂η
+

d⃗p

dη
· ∇⃗pf +

d⃗x

dη
· ∇⃗f = C[f],

where the right hand side contains the effects from collisions (i.e., absorption, emission, scattering).

▶ This needs to be supplemented by the photon geodesic equation

d⃗p

dη
= p ∇⃗(ϕ+ ψ),

d⃗x

dη
= −(1 + ϕ+ ψ)

p⃗

p
= −(1 + ϕ+ ψ)n̂.

The photon energy is E = (1 + ϕ)p/a.

▶ If we assume that the perturbations leave the form of the photon distribution as blackbody and only change the value of the temperature, we write

f(η, p⃗, x⃗) = f̄ + δf = f̄
(

E

T0 + δT(η, n̂, x⃗)

)
.

▶ Defining Θ(η, n̂, x⃗) ≡ δT/T0 , we can write the Boltzmann equation as

∂Θ

∂η
+ n̂ · ∇⃗Θ + n̂ · ∇⃗ψ −

∂ϕ

∂η
= aσTne

[
Θ0 − Θ + n̂ · ∇⃗Vb +

1

16
Παβn

αnβ
]
,

with

Θ0(η, x⃗) ≡
∫

dΩ

4π
Θ(η, n̂, x⃗) =

1

4
δr, Π

αβ ≡ 12

∫
dΩ

4π
Θ

(
nαnβ −

1

3
δ
αβ

)
.

Παβ is the anisotropic stress which arises from the angular dependence of the Thomson scattering.

▶ Note that a non-zeroΠαβ makes ϕ ̸= ψ.
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Fluid equations
▶ Let us write the Boltzmann equation in Fourier space

∂Θ

∂η
+ in̂ · k⃗Θ+ in̂ · k⃗ψ − ∂ϕ

∂η
= aσTne

[
Θ0 −Θ+ in̂ · k⃗Vb +

1

16
Παβn

αnβ
]
.

▶ Taking the zeroth moment, i.e.,
∫
dΩ/4π × (. . .) gives the continuity equation

δ′r =
4

3
k2Vr + 4ϕ′,

where the fluid bulk velocity is

v⃗r = 3

∫
dΩ
4π

n̂ Θ =⇒
∫

dΩ
4π

nα Θ =
i
3
kαVr.

▶ The first moment, i.e.,
∫
dΩ/4π nα × (. . .) gives the Euler equation

V′
r = −δ

′
r

4
− ψ − 1

4

kαkβΠαβ

k2
− aσTne (Vr − Vb) .

Note the presence of Παβ in the equation, which becomes important in the second order tight-coupling limit.
▶ To close the system of equations, one needs an evolution equation for Παβ , which would involve higher order

moments. This leads to a infinite series of equations called Boltzmann hierarchy.
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Integral solution
▶ An alternate way to solve the equation is to write it as

∂ (Θ + ψ)

∂η
+ n̂ · ∇⃗ (Θ + ψ) + aσTne (Θ + ψ) =

∂ (ϕ+ ψ)

∂η
+ aσTneS, S ≡ δr

4
+ ψ + n̂ · ∇⃗Vb +

1

16
Παβn

αnβ .

▶ This can be solved along a line of sight using the method of characteristics

Θ(η0) + ψ(η0) =

∫ η0

0

dη′ e−τ(η′) ∂ (ϕ+ ψ)

∂η′
+

∫ η0

0

dη′ g(η′) S(η′),

where we have already defined the optical depth and visibility function, respectively, as

τ(η) =

∫ η0

η

dη′a(η′)σTne(η
′), g(η) = a(η)σTne(η) e

−τ(η).

▶ The form of the solution tells us that Θ are sourced not only by δr, but also ϕ, ψ, ∇⃗Vb (or ∇⃗Vr) and so on.
▶ We can Fourier transform the solution and expand it as

Θ(η0, n̂, k⃗) = 4π
∞∑
ℓ=0

ℓ∑
m=−ℓ

(−i)ℓ Θℓ(η0, k⃗) Yℓm(n̂) Y
∗
ℓm(k̂).

The spherical harmonic coefficients are

aℓm = 4π(−i)ℓ
∫

d3k
(2π)3

Θℓ(η0, k⃗) Y
∗
ℓm(k̂).
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Sachs-Wolfe effect
▶ At large scales k ≪ η−1

LSS , one can obtain simple solutions. At super-Hubble scales, we ignoreΠ and ∇⃗Vb → k⃗Vb , and take ψ = ϕ = const.

▶ At kη → 0 limit, the density perturbations remain constant δm = δb = −2ϕ and δr = 4δb/3.

▶ The line of sight solution becomes

Θ(η0, n̂, x⃗) + ψ(η0, x⃗) ≈
∫ η0

0

dη′ g(η′)

[
δr

(
η′, x⃗ − n̂(η0 − η′)

)
4

+ ψ
(
η
′
, x⃗ − n̂(η0 − η

′
)
)]

≈
∫ η0

0

dη′ g(η′)

[
ϕ
(
η′, x⃗ − n̂(η0 − η′)

)
3

]
.

▶ The visibility function peaks at η = ηLSS and we can take it as a delta function. One can then show that

Θℓ(η0, k⃗) =
1

3
ϕ(ηLSS, k⃗) jℓ[k(η0 − ηLSS)].

▶ Now, Cℓ ∝ |aℓm|2 ∝ |Θℓ|2 ∝ |ϕ(⃗k)|2 ∝ Pϕ(k).

▶ If we take k3Pϕ(ηLSS, k)/2π
2 = Ask

n−1 with n ≈ 1, we get

Cℓ =
2

9π

∫ ∞

0

dk

k

[
k3Pϕ(ηLSS, k)

]
{jℓ[k(η0 − ηLSS)]}2

=
4π2

9
As

2n−4Γ(3 − n)Γ [(2ℓ+ n − 1)/2]

Γ2 [(4 − n)/2] Γ [(2ℓ− n + 5)/2]
.

▶ For n = 1, it simplifies to
ℓ(ℓ+ 1)Cl

2π
=

As

9
.

Thus it is a constant at small ℓ. This is a strong probe of the amplitude of Pm(k).
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Other CMB effects
▶ The Thomson scattering also produces polarization which can

be observed. The signal can be calculated and compared with
obervations.

▶ The CMB picks up features from the post-recombination
universe as it free streams to us, known as secondary
anisotropies (as opposed to primary anisotropies
generated during recombination). Some examples are

– Integrated Sachs-Wolfe effect: The ϕ′ + ψ′ term in the solution,
important only in the dark energy dominated era.

– Reionization: The reionization by the first stars modifies the visibility
function and generates additional signal (both temeprature and
polarization).

– Lensing: The CMB gets lensed by structures at low redshifts.

▶ The CMB also suffers spectral distortions where it departs
from the blackbody curve. This arises, e.g., from the
Sunyaev-Zel’dovich effect in hot clusters (CMB photons
getting scattered off high-energy electrons) and 21 cm
absorption/emission of neutral hydrogen.

▶ CMB has been the most important probe to constrain
cosmological parameters, leading to the standard model of
cosmology.

Planck Collaboration (2018)
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