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Tirthankar Roy Choudhury
National Centre for Radio Astrophysics
Tata Institute of Fundamental Research

Pune

IN
h 4

NCRATIFR



N
N

Temperature fluctuations

» The CMB sky shows small fluctuations in the temperature, i.e., the value is different in different directions NGRASTIER
. S T(n _
O(n) = (7) ~107°.
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» Analogous to Fourier transforms, one can expand a field on a spherical surface as
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» The equivalent of the power spectrum is the angular power spectrum (to be defined more rigorously later)
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Sometimes the power spectrum is defined as T3 Cq. Also, Dy = £({ + 1)20—5.
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Features in the angular power spectrum {5

» The measured power spectrum agrees extremely well with the theoretical one. Shows various features at different
angular scales.
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» We will discuss the physics of these features in a simplistic manner.
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» To the zeroth order, we assume that the temperature fluctuations measure the radiation perturbations at the e
last scattering surface (keeping in mind that p, oc T*)

Radiation perturbations

N 1 - .
o(n) ~ Z(sr('flLS& X = nussh)
» The evolution of the different species is given by the conservation equations (with k* = vk, ks)
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» For radiation, we have P, = /3. If we assume P, = p,/3, then p, = P, — P, = P,J,.
» Also, p, x a~* = p|/p. = —4d /a. The equations are then
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» For baryons, we can ignore the pressure, use p,,/pm = —3d’/a and write

/

5= RVit+3¢, Vi=-SV,—o.

Note that the same equations should hold for dark matter too.
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Baryon-photon fluid N

NCRATIFR

» The equations we wrote hold when the different fluids are not interacting with each other. However, we know that
before decoupling, the photons and baryons (electrons) were scattering off each other.

» In that case, we need to add the interaction term to the equations. Without deriving the term, we write it directly as

5 = %k2v,+4¢’, V.= f% — ¢ —aom (Vi — Vs,
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» The interaction term acts as a “drag” and tries to bring the baryons and photons to have the same velocity.

» In fact, the (comoving) photon mean free path Ar = (aorn.) ™' ~ 1 — 2 Mpc just before decoupling. Compare this
with the comoving Hubble radius n = (aH)71 2 200 Mpc. Thus we can take the limit A\t — 0, which is known as

the tight-coupling approximation.
» To the zeroth order in A1, we have A
ViV, o~ §6b~
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First order corrections l\

>

To obtain the first order corrections to the tight-coupling limit, we use the zeroth order solutions and write the xe-miee
baryon velocity equation as

/ /
aorne(Ve — Vp) = R (\/b+ %vb+¢) ~ R (\/,+ %v,+¢>
Put this in the photon velocity equation to obtain the first order corrections
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Use R'/R = p},/p» — p./pr = d /a, and eliminate V;, from the two equations
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where

(=1 c:4(¢”+ R ¢>’—1k2¢).
V3A+R)’ 1+R 3
Note that the square of the baryon-photon sound speed is
oP P, 1 p 1 |: —4(d' /a)p; :| _ 11
=3(a /a)py — 4(d' /a)p; 31+ R
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Thus the sound speed is nothing but c;.



Approximate solutions

» The equation has the form of a forced harmonic oscillator nememen

c?é, =G.
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The solutions will be oscillatory with a phase ¢ = k [ dn ¢;(n).

» We can define the sound horizon as

nn = "o o) = [ W

> If the phase of the solution varies faster than the amplitude, we can use WKB approximation to find the solution to
the homogeneous equation. This condition is effectively k ¢, > R/(1 + R) ~ ™', i.e., valid for scales smaller than
the sound horizon.

» Once the solutions to the homogeneous part are found, one can use the Wronskian to find the full solution. The
solution in this approximation turns out to be

6r(77) ~ A1

nlh o 1\13/4 ’ ’
(kry) cos(krs) / 1—|—Rn)] sin [k{r(n) — r:(n)}] G(0').
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The constants can be fixed by the initial conditions.
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P The solution clearly has peaks and troughs with a scale r;. The power spectrum o< \5r|2 will have peaks separated by
Ak =7/rs.

» The corresponding separation in angular multipoles would be Al = niss Aks = 7nss/rs. The corresponding angular
scale is 0 = w/Als = r/nss.

Acoustic peaks

» These oscillatory features in the power spectrum are called baryon acoustic oscillations (BAO).

» Observations can constrain s (which depends on the cosmological parameters).
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Diffusion damping N\

» To the second order in A1 = (aorn.) ™", one finds that the photons diffuse from hot (high density) regions to -
cold (low density). This leads to a decrease in fluctuations, called diffusion damping or Silk damping.

» To work out the details, it turns out that the simple perfect fluid picture for photons is not sufficient. Rather one has
to work with the Boltzmann equation involving the distribution function f{(n, p, X).

» An order of magnitude estimate is possible for the diffusion damping scale Ap. If a photon does a random walk and
suffers Nicat scatterings off electrons, it travels a distance Ap ~ /Nscat A7. Over a cosmic time 7, the number of
scatterings would be Necat ~ 1/A1. Thus )\% ~nAr

P At scales < Ap, the fluctuations will be damped.

» The full calculation shows

DY A B B (' 4
() =g =5 o e [P0+ 5 0+ 20

where fp is a correction factor for polarization (= 1 for isotropic unpolarized light).
2 /12
» This leads to 6, —» &, e < /%0,
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BAO post decoupling ﬂz

P After the baryons decouple from the radiation, the perturbations grow d;, o< a. Similarly, dpm x a and nera - TiER
PmOm = pompm + Pp0b.

» The growth of §, contain both density and velocity perturbations from the decoupling epoch which leads to shifts in

the BAO peaks.
» In presence of baryons, the matter transfer function changes to

Q
— Tom (k) + Qb’o To(k), Qmo = Qom0 + Qo0
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Figure courtesy Martin White
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BAO in galaxy surveys l\

SDSS DR9 NeRA=TIFR
© T — T T
Reconstructed
. CMASS DR9
——best—fit model
x°=61.1 / 59
In. [ -
o ¥
Q
o
=
T
e}
~
-
e
& Yr 4
) § 8
§s
g ls
- a
~ (=]
2
a
wl 28 i
k / h Mpe™!
L L

-1.5 -1 -05

logy k / h Mpe™!

Anderson et al (2012)



JIN]
Boltzmann equation for photons f}

P In general, the evolution of radiation perturbations need to be solved using the distribution function f(n, p, X), which is the number NCRATIFR
per unit phase space volume. The distribution satisfies the Boltzmann equation
of dp = dX =
— + — - Vf+ — - Vf=C
on  dn of dn f .

where the right hand side contains the effects from collisions (i.e., absorption, emission, scattering).

P This needs to be supplemented by the photon geodesic equation

T =pY06+0). g =—(+o+nl=—aroton
The photon energy is E = (1 + ¢)p/a.
P If we assume that the perturbations leave the form of the photon distribution as blackbody and only change the value of the temperature, we write
_ - E
fn, B, %) =f+ 5f=f<m> .
P Defining ©(n, i, X) = 6T/ To, we can write the Boltzmann equation as
12}

(€] - i o - 1
—+ﬁ~V@+ﬁ-Vw7—¢:aaTne [@07@+ﬁ-vvb+—naﬁn“nﬁ},
on on 16

dQ 1 dQ 1
©0(n, %) = / 100, %) = 16, nf = 12/59 <nan‘* - gaa‘f) .

with

1%7 is the anisotropic stress which arises from the angular dependence of the Thomson scattering.

» Note that a non-zero I1*? makes ¢ # .
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Fluid equations

» Let us write the Boltzmann equation in Fourier space

a—9—|—1n k@—l—ln /a/}—@:aarne ©y)—0O+in- ka—|— 1Hagnanﬁ
on on 16

> Taking the zeroth moment, i.e, [ d2/4m x (...) gives the continuity equation

5 = %k2v,+4¢’,

dQy .
v,—3/4 6:>/—na@—§ V..

> The first moment, i.e., [ dQ/47 no X (...) gives the Euler equation

where the fluid bulk velocity is

5! 1 kaksTT®?
B )

Note the presence of II*# in the equation, which becomes important in the second order tight-coupling limit.

> To close the system of equations, one needs an evolution equation for II*?, which would involve higher order
moments. This leads to a infinite series of equations called Boltzmann hierarchy.
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Integral solution N

» An alternate way to solve the equation is to write it as NoRavTIFR
d(© g 0 Or g 1 o
(Tw+n-V(@+w)+aarne(@+¢) = W4—aames, S= Z+w+n-vvb+1—6na,3n n’.

» This can be solved along a line of sight using the method of characteristics

0 f )
@(17o)+w<no):/0 dn’ e—ﬂn)i@(@;; ¥) +/O dn’ g(n') S(n'),

where we have already defined the optical depth and visibility function, respectively, as
U
T(n) = / dn’a(n)orn.(n'), gn) = a(n)orm.(n) e ™™,
n

» The form of the solution tells us that © are sourced not only by §,, but also ¢, v, A (or ﬁv,) and so on.
» We can Fourier transform the solution and expand it as

O (1o, i, k) —47rz Z —i)* (10, K) Yem() Yim(k).

£=0 m=—1L
The spherical harmonic coefficients are

aom = dr(—i)! / %@Ano,h Vin(k).



Sachs-Wolfe effect
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P At large scales k < 17,351, one can obtain simple solutions. At super-Hubble scales, we ignore IT and ﬁVb — EVb, and take 1) = ¢ = const. ncra-Tier

P At kn — 0 limit, the density perturbations remain constant §,, = 8, = —2¢ and 6, = 46,/3.

P The line of sight solution becomes

ér /7—'_A _ ’
(n',% Z(no n))+

%/onodn’g(n') [¢(n7?*ﬁ(n077])) .

no / /
e(no,ﬁ,?)+¢(noi)%/o dn” g(n )[

3

¢ (n',X—hlno —n'))

P The visibility function peaks at 7 = nss and we can take it as a delta function. One can then show that

O (o, k) = %lﬁ(ms& K) jelk(no — muss)]-

> Now, C¢ o [agm|* oc [©¢]* o [¢(R)|* ox Py (k).
P> If we take k3P¢('r]|_55, k)/27r2 = AL~ withn ~ 1, we get

472 2"A0(3 — I [(26+n—1)/2]

2 oo dk .
Co = — [ spé(ans’k)} Ljelk(no — muss)]}> = —A
97 Jo k
» For n = 1, it simplifies to :::
L+ 1)G _ As o
2r 9 = o
Thus it is a constant at small £. This is a strong probe of the amplitude of Py, (k). o

9 'I2[(4—n)/2]T[(2¢ —n+5)/2]

A
f

K
|
{
1, K

10 3 500 1000 150 2000 2500



N
Other CMB effects N

» The Thomson scattering also produces polarization which can NeRA-TIER
be observed. The signal can be calculated and compared with
obervations.

» The CMB picks up features from the post-recombination —— Ll onh (IETEEE lont densing Tt
. . arameter 68% limits 68% limits
universe as it free streams to us, known as secondary . - - oo
. ) dt ’ isot . Qh . 0.02212 + 0.00022 0.02242 £ 0.00014
aHISOtroples .(as Oppose N o Prlmary aniso roples . . .. oo s 0.1206 + 0.0021 0.11933 + 0.00091
generated durlng recomblnatlon) Some exa’mples are 10060mc . .. ... .. 1.04077 + 0.00047 1.04101 + 0.00029

- Integrated Sachs-Wolfe effect: The ¢’ + 1)’ term in the solution, T 0.0522 + 0.0080 0.0561 +0.0071
important only in the dark energy dominated era.

T, R N " . In(10"4,) . . ... .. 3.040 +0.016 3.047 £ 0.014
- Reionization: The reionization by the first stars modifies the visibility T e
function and generates additional signal (both temeprature and Mo 0= 26670008
polarization). Holkms™' Mpe™'] .. 66.88+0.92 67.66 +0.42
- Lensing: The CMB gets lensed by structures at low redshifts. Ohis 2 5 o mmeie 0.679 +0.013 0.6889 + 0.0056
» The CMB also suffers spectral distortions where it departs fap 2 % v nimase & 032120013 0311100056
from the blackbody curve. This arises, e.g., from the Qui? L 0.1434 £ 0.0020 0.14240  0.00087
. . QU - 5 ¢ s s 0.09589 + 0.00046 0.09635 + 0.00030
Sunyaev-Zel’dovich effect in hot clusters (CMB photons i * *

. . By ounnsvamnn 0.8118 + 0.0089 0.8102 + 0.0060
getting scattered off high-energy electrons) and 21 cm SemoslB JIA0S . GOS0 -
absorptlon/emissmn of neutral hydrogen' OB ... 0.6110.012 0.6051 + 0.0058

» CMB has been the most important probe to constrain R 1304082 182071
cosmological parameters, leading to the standard model of Planck Collaboration (2018)

cosmology.



