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Major milestones of the hot Big Bang

Event t (approx) z (approx) T (approx) Description
Inflation 10−34 s ? → ∞ 1016 GeV ? perturbations generated
Baryogenesis ? ? ? explain the observed baryon density through

some mechanism without assuming any initial
asymmetry in matter and antimatter.

EW phase transition 10−11 s 1015 100 GeV electroweak force “breaks” into weak and electromagnetic
QCD phase transition 10−5 s 1012 100 MeV quarks & gluons bind into protons & neutrons
Dark matter freeze-out ? ? ? dark matter particles decouple
Neutrino decoupling 1 s 1010 1 MeV neutrinos decouple
Electron-positron annihilation 10 s 109 0.5 MeV e± annihilate into photons
Big Bang nucleosynthesis 3 m 108 100 keV nuclei of light elements form
Matter-radiation equality 6 × 104 y 3500 1 eV
Recombination 4 × 105 y 1100 0.2 eV neutral hydrogen atoms form
Photon decoupling 4 × 105 y 1100 0.2 eV photons decouple from matter, CMB originates
Formation of first stars 108 y 15 5 meV first galaxies form
Dark energy-matter equality 1010 y 0.4 0.3 meV
Present 1.4 × 1010 y 0 0.2 meV
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Universe at kBT ≲ 1 GeV

▶ Let us apply the concepts discussed so far to study the evolution of the universe for T ≲ 1013 K ∼ 1 GeV.
▶ Particles with m > 1 GeV (like protons and neutrons) would have become nonrelativistic and hence would not

contribute significantly towards the energy density or entropy.
▶ The only particles which would be relativistic are photons (mγ = 0), electrons, positrons (me ∼ 0.5 MeV), three

species of neutrino and anti-neutrino (mν ≲ 0.1 eV).
▶ Neutrino equilibrium maintained by weak interactions, e.g., e+ + e− ←→ νe + ν̄e and e− + ν̄e ←→ e− + ν̄e.
▶ The values of g∗, g∗S are given by (note that neutrinos are spin-1/2 particles but they have gν = 1 because all of them

have left-handed helicity)

g∗ = g∗S = g∗,th =
∑
B

gB +
7

8

∑
F

gF = gγ +
7

8
[ge + gē + 3(gν + gν̄)] =

43

4
= 10.75.
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Decoupling of neutrinos

▶ The weak interaction rate for neutrinos is ΓW ∼ G2
FermiT

5, where GFermi = α/m2
ξ ≈ 1.17× 10−5GeV−2 is the Fermi

constant (mξ ≈ 50 GeV is the mass of the gauge-vector boson).
▶ Using the form of the Hubble parameter derived earlier, one can show that

ΓW

H
∼

(
kBT

1.4MeV

)3

∼
(

T
1.6× 1010K

)3

▶ So, the interaction rate of neutrinos becomes lower than expansion rate when T < TD ≈ 1 MeV. The corresponding
time is

t = 2.42× 10−6s g−1/2
∗

(
kBT
GeV

)−2

s ∼ s.

▶ At these lower temperatures, the neutrinos are decoupled from the rest. Since they are almost massless, they are
relativistic at the time of decoupling (they will remain relativistic even now if they are massless).

▶ After neutrino freeze-out, electrons and positrons remain in equilibrium with radiation via annihilation and
pair-production. The entropy of the neutrinos will be conserved separately. Since the neutrinos remain relativistic
during decoupling, the total g∗S remains conserved.
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Degrees of freedom

▶ The value of g∗S contributed by electron, positrons and photons (after neutrino decoupling) would be

g∗S =
∑
B

gB +
7

8

∑
F

gF = gγ +
7

8
(ge + gē) =

11

2
= 5.5.

▶ The same for the neutrinos would be

g∗S =
7

8
3 (gν + gν̄) =

21

4
= 5.25,

the total being 10.75, as before. The two components will be conserved separately.
▶ The temperatures of the two components would keep on falling as a−1, thus neutrinos and photon-electron-positron

plasma would continue to have the same temperature even though they do not interact.
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Annihilation of e± pairs

▶ However, the photon temperature T can be different if the value of g∗S changes somehow, e.g., if species in
equilibrium become non-relativistic.

▶ When T = Tγ ≲ 0.5 MeV, the photons do not have enough energy to produce e+e− pairs and hence the electrons
and positrons would annihilate and thus disappear. Once this happens, the value of g∗S would be

g∗S = gγ +
7

8
× 3 (gν + gν̄)

(
Tν
T

)3

= 2 +
21

4

(
Tν
T

)3

.

▶ Because g∗S decreases (the contribution of e−, e+, γ plasma goes from 5.5 to 2) during e+e− annihilation at a = aann,
we expect T to rise (which is because of pairs dumping energies into photons). Note that since the neutrinos have
already decoupled, they cannot receive any of the entropy released by the electron-positron pairs.

Tirthankar Roy Choudhury 5



Neutrino and photon temperatures

Since entropy is conserved, we expect them to be equal before (a = a−) and after (a = a+) the annihilation

g∗S(a−) T
3(a−) a

3
− = g∗S(a+) T

3(a+) a
3
+ conservation of entropy

43

4
(T− a−)

3 = 2(T+ a+)
3 +

21

4

(
Tν
T

)3
∣∣∣∣∣
a=a+

(T+ a+)
3 g∗S for γ, e±, νe, ν̄e

43

4
(Tν− a−)

3 = 2(T+ a+)
3 +

21

4
(Tν+ a+)

3 Tν = T = Tγ before annihilation

43

4
(Tν+ a+)

3 = 2(T+ a+)
3 +

21

4
(Tν+ a+)

3 Tν ∝ a−1 throughout

11

2
T3ν+ = 2T3+

Tν(a+) =
(

4

11

)1/3

T(a+)

Clearly the photon temperature is higher than the neutrinos after annihilation.
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Numerical solution to the temperature evolution
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The neutrino background
▶ Thus Tν < T when the pair-production is halted at Tγ ≲ 0.5 MeV. Since both Tν and T fall as a−1

afterwards, the above relation is maintained till today.
▶ The neutrino temperature today is Tν = (4/11)1/3 × 2.73 K ≈ 1.95 K.
▶ The neutrinos form a homogeneous background which can be detected today. However, since the neutrinos have

only weak interaction, detecting the small background is a big challenge.
▶ At present epoch, photons and (massless) neutrinos (plus antineutrinos) are relativistic, however they are at different

temperatures, hence

g∗(t0) =
∑

B∈bosons

gB (TB/T)
4 + (7/8)

∑
F∈fermions

gF (TF/T)
4 = 2× 1 + (7/8)(3× 2× 1) (4/11)4/3 ≈ 3.36,

g∗S(t0) =
∑

B∈bosons

gB (TB/T)
3 + (7/8)

∑
F∈fermions

gF (TF/T)
3 = 2× 1 + (7/8)(3× 2× 1)(4/11) ≈ 3.91.

▶ The energy density at the present epoch is

ρR(t0) =
π2

30

(
k4B
h̄3

)
g∗T

4
0 ≈ 8.1× 10−34 gm cm−3.

▶ Then Ωr,0 ≡ ΩR,0 ≈ 4.3× 10−5h−2 ≈ 1.68 Ωγ,0 because ργ,0 = (π2/15)
(
k4B/h̄

3
)
T40.

▶ The contribution to density by neutrinos will be given by the above only if the neutrinos are still relativistic. If the
neutrinos have mass, then when T ≲ mν it is possible for neutrinos to contribute much more to the density because
there would be a lower bound in the contribution to density made by a neutrino. A neutrino with mass mν has to
contribute at least mν to density.
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Non-equilibrium evolution
▶ It is possible to work out the effect of decoupling and departure from equilibrium more rigorously. A nice

application of this would be to study the freezing out of dark matter and calculate the amount of dark matter present.
▶ For this, we need to assume something about the dark matter particles, which will be speculative. Let us start with

the hypothesis that the dark matter particles have only weak interaction.
▶ We also assume that at sufficiently early times the dark matter particle X and its anti-particle X̄ can annihilate and

produce two light particles l and l̄, i.e., X+ X̄←→ l+ l̄.
▶ These light particles are assumed to be tightly coupled to the rest of the cosmic plasma. Hence they will assume their

equilibrium densities nl = n(0)l and n̄l = n(0)
l̄

.
▶ In case X are neutrinos, l would be electrons.
▶ We also assume that nX ≈ nX̄, i.e., the asymmetry in the dark matter and anti-matter is very small (which follows if

the chemical potential is small).
▶ We then have (see the previous lecture)

ṅ0,X
n0,X

=− ΓX

1− n(0)0,Xn
(0)

0,X̄

n(0)0,l n
(0)

0,̄l

n0,ln0,̄l
n0,Xn0,X̄

 = −⟨σv⟩nX̄

[
1−

n(0)0,Xn
(0)

0,X̄

n0,Xn0,X̄

]
,

dn0,X
dt

= −a−3 ⟨σv⟩n20,X

1−
(
n(0)0,X

)2

n20,X

 = −a−3 ⟨σv⟩
[
n20,X −

(
n(0)0,X

)2
]
.
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The temperature evolution

▶ We will assume for simplicity that during most of the relevant epochs related to the dark matter decoupling and
freeze-out the temperature T ∝ a−1. We then have

1

T
dT
dt

=
d ln T
dt

= −d ln a
dt

= − ȧ
a
= −H

▶ Let us introduce a new dimensionless variable
x ≡ mX

kBT

such that
dx
dt

= − mX

kBT2
dT
dt

= − x
T
dT
dt

= H x.

▶ Since we are in the radiation dominated era, the evolution of H is given by

H ∝ a−2 ∝ T2 =⇒ H(T) =
H(mX/kB)

x2
≡ Hm

x2
,

Hm is the Hubble parameter when x = 1, i.e., kBT = mX.
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The Riccati equation
▶ Hence

dn0,X
dx

=
dn0,X
dt

dt
dx

= − 1

H x
a−3 ⟨σv⟩

[
n20,X −

(
n(0)0,X

)2
]
= −⟨σv⟩

Hm

x
a3

[
n20,X −

(
n(0)0,X

)2
]
.

▶ Let us define another dimensionless variable

YX ≡
(
h̄3

k3B

)
n0,X
(aT)3

=

(
h̄3

k3B

)
nX
T3

.

▶ Since the combination aT does not evolve, we get

dYX

dx
= − h̄3/k3B

a3T3
⟨σv⟩
H(mX)

x
a3

a6T6

h̄6/k6B

[
Y2
X −

(
Y(0)
X

)2
]

= −
(
k3B
h̄3

)
⟨σv⟩
Hm

xT3
[
Y2
X −

(
Y(0)
X

)2
]
= −⟨σv⟩m

3
X

h̄3Hm

1

x2

[
Y2
X −

(
Y(0)
X

)2
]
.

▶ We are thus left with solving the differential equation

dYX

dx
= − λ

x2

[
Y2
X −

(
Y(0)
X

)2
]
,

where

λ ≡ ⟨σv⟩m
3
X

h̄3Hm
−→ ⟨σv⟩m

3
Xc

3

h̄3Hm
.

Equations of the above form are known as Riccati equations.
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Equilibrium densities
▶ To solve the equation, we need to know how λ is related to x or T. For some models, the cross section
⟨σv⟩ depends on T, while for some it is independent. We will work with the simple case where λ can be taken as a
constant.

▶ The equilibrium number density is given by

n(0)X =
gX

2π2h̄3

∫ ∞

mX

dE E
√

E2 − m2
X

eE/kBT ± 1
.

▶ This gives

Y(0)
X =

(
h̄
kB

)3 n(0)X

T3
=

gX
2π2

∫ ∞

x

dy y
√

y2 − x2

ey ± 1
.

▶ The number density can be written in closed form for the ultra- and non-relativistic case. For the former (x≪ 1), we
have

n(0)X =
ζ(3)

π2

(
kB
h̄

)3

gB,FT
3 =⇒ Y(0)

X = gB,F
ζ(3)

π2
,

where gB,F = gX, 3gX/4 for bosons, fermions.
▶ For the non-relativistic case (x≫ 1),

n(0)X = gX

(
mXkBT
2πh̄2

)3/2

e−mX/kBT =⇒ Y(0)
X =

gX
(2π)3/2

x3/2 e−x.
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Relics

▶ Returning back to the Riccati equation, we can see that for x→ 0, the interaction term λ/x2 →∞, and hence the
system will try to attain its equilibrium value YX(x→ 0) ≃ Y(0)

X .
▶ As x increases, the annihilations become less efficient λ/x2 → 0 and hence YX −→ constant, the freeze-out value. Let

the freeze-out occur at x = xD, then YX,∞ ≡ YX(x→∞) = YX(xD).
▶ The frozen out species are usually known as “relics”.
▶ There are three possible types of relics:

1. Hot relics: the particle remains relativistic during decoupling and is relativistic even today (e.g., massless neutrinos).
2. Warm relics: the particle remains relativistic during decoupling and is non-relativistic even today (e.g., massive neutrinos).
3. Cold relics: the particle has become non-relativistic before decoupling (e.g., cold dark matter).

▶ In the case of the hot/warm relics, xD ≪ 1. For cold relics, xD ≫ 1.
▶ Note that we are studying what are known as “thermal relics”. It is possible that there were non-thermal relics too

(i.e., particles that were never in equilibrium with the cosmic plasma), e.g., axion-like particles inspired by string
theory.
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Numerical solution
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Hot and warm relics
▶ For the hot/warm relics, xD ≪ 1, so the equilibrium density Y(0)

X does not evolve till x = xD.
▶ In that case, the Riccati equation implies a solution YX = Y(0)

X = constant.

▶ Hence the relic density is given by YX,∞ = Y(0)
X (xD) = gB,F

ζ(3)

π2
.

▶ The number density at decoupling is nX(xD) =
(
k3B
h̄3

)
Y(0)
X (xD)T

3
D =

ζ(3)

π2

(
k3B
h̄3

)
gB,FT

3
D.

▶ If the species has decoupled, the number density will evolve as a−3, hence the relic density today (a = 1) would be

nX,0 = nX(xD) a
3
D =

ζ(3)

π2

(
k3B
h̄3

)
gB,FT

3
Da

3
D.

▶ It is useful to express this quantity in terms of the CMB temperature today T0. We have already seen that
T ∝ a−1g−1/3

∗S (conservation of entropy). Hence

T3Da
3
D = T30

g∗S(T0)
g∗S(TD)

▶ Since g∗S(T0) ≈ 3.91, the number density of the hot/warm relic at present is given by

nX,0 = 3.91
ζ(3)

π2

(
k3B
h̄3

)
gB,F

g∗S(TD)
T30,

which is inversely proportional to g∗S(TD), the entropy state of the universe during decoupling of the species.
▶ Note that in this case, the relic density is “relatively” insensitive to the details of decoupling.
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Present density of hot/warm relics
▶ For the hot relics, the number density is given by its temperature

nX,0 =
ζ(3)

π2

(
k3B
h̄3

)
gB.FT

3
X,0 =⇒ T3X,0 =

3.91

g∗S(TD)
T30.

▶ As an example, for massless neutrinos we have g∗S(TD) = 10.75, hence T3ν,0 = 0.36T30, identical to the result we
obtained earlier. The relic energy density is ρX,0 ∝ T4X,0.

▶ Warm relics have a small mass, hence we have

ρX,0 = nX,0 mX = 3.91
ζ(3)

π2

(
k3B
h̄3

)
gB,F

g∗S(TD)
T30 mX.

▶ If we put in the appropriate values, we get the corresponding density parameter as

ΩX,0 =
ρX,0
ρc,0

= 0.0765 h−2 gB,F
g∗S(TD)

( mX

1eV

)
.

▶ Since we know from observations that total matter Ωm,0h2 ≲ 1, we get a conservative bound

mX ≲ 13.1 eV
g∗S(TD)
gB,F

.

For neutrinos gB,F = 2× 3/4 (accounting for anti-particles) and so mν ≲ 94 eV. However, structure formation studies
provide a much tighter bound on the mass.

Tirthankar Roy Choudhury 16



Cold relics

▶ The calculation is not straightforward for cold relics because the equilibrium density Y(0)
X begins to evolve with x as

soon as the species becomes non-relativistic.
▶ One can obtain approximate solutions by assuming that the species retains the equilibrium density till x = xD and

freezes out at x > xD. Then YX,∞ = YX(xD) = Y(0)
X (xD).

▶ The value of xD can be estimated by demanding ΓX(xD) = H(xD).
▶ These calculations, when compared with the present bounds on dark matter density ΩDM,0, leads to a heavy

mX ∼ GeV− TeV having weak interaction-like cross sections as possible dark matter candidate. These are known as
Weakly Interacting Massive Particles (WIMPs).

▶ Unfortunately, no such particles have been detected in the particle physics collider experiments or otherwise.
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